SAS 9.4: A Survival Guide for EPRS 8530, EPRS 8540, and EPRS 8550 Students Edition 1 April 2019

Theresa L. Dell-Ross

Department of Educational Policy Studies Georgia State University

T. Chris Oshima

Department of Educational Policy Studies Georgia State University

Table of Contents

Foreword	
Acknowledgement	4
About This Guidebook	5
Getting Started with SAS 9.4	6
Descriptive Statistics	11
Research Scenario	11
SAS Code for Measures of Central Tendency, Measures of Spread, and Corre	elation12
SAS Code for Frequency	14
Selected Output	17
Inferential Statistics	
One-Sample <i>t</i> Test	25
Research Scenario	25
SAS Code	26
Selected Output	
Independent t Test	
Research Scenario	
SAS Code	34
Selected Output	
Dependent t Test	40
Research Scenario	40
SAS Code	41
Selected Output	43
One-Way ANOVA	45
Research Scenario	45
SAS Code	46
Selected Output	48
Two-Way ANOVA with Nonsignificant Interaction	54
Research Scenario	54
SAS Code	55
Selected Output	58
Two-Way ANOVA with Significant Interaction	66
Research Scenario	66
SAS Code	67

Selected Output	70
Analysis of Covariance (ANCOVA)	78
Research Scenario	78
SAS Code	79
Selected Output	81
Repeated Measures: One Within Factor Design	85
Research Scenario	85
SAS Code	86
Selected Output	89
Repeated Measures: One Within Factor and One Between Factor Design	96
Research Scenario	96
SAS Code	97
Selected Output	100
Simple Linear Regression	115
Research Scenario	115
SAS Code	116
Selected Output	118
Multiple Regression	128
Research Scenario	128
SAS Code	129
Selected Output	134
Model Building / Variable Selection	149
Research Scenario	149
SAS Code	150
Selected Output	152
Appendix	
US Cereal Data	184
Plant Height Data	186
Highway1 Data	191

Foreword

The purpose of this guidebook is to help you successfully use SAS 9.4 to complete the course assignments for EPRS 8530: Quantitative Methods & Analysis I, EPRS 8540: Quantitative Methods & Analysis II, and EPRS 8550: Quantitative Methods & Analysis III. Specifically, this guide will provide assistance as you (1) analyze data using a variety of statistical models, (2) verify the tenability of the associated statistical assumptions, (3) read and interpret the corresponding output, and (4) report your results in an appropriate format and style.

For each method of statistical analysis, you will find the following:

- 1. a sample research scenario with a small dataset,
- 2. SAS code for executing the analysis with explanatory notes and tips, and
- 3. excerpts of selected output noting the results most commonly of interest to the researcher, and
- 4. sample summary statements of the results following American Psychological Association (APA) 6th Edition reporting guidelines.

Please note that most of the scenarios and datasets herein are intentionally small and simplistic, so that you can focus your attention on the SAS code and output presented. The code needed to run analyses will invariably differ for your own particular course assignments and research projects. *Pay careful attention to the explanatory notes provided*, as these should help you adapt the code to your specific needs.

It is our hope that you will find this guidebook helpful as you learn new statistical methods and that it also comes in handy as a reference for you later in your statistics career.

Theresa Dell-Ross Department of Educational Policy Studies Georgia State University

T. Chris Oshima Department of Educational Policy Studies Georgia State University

Acknowledgement

This guide is modeled in large part after *SPSS for Windows Versions 20.0 (for Windows 7): A Survival Guide for EPRS 8530 and EPRS 8540* (Edition 5, Version 1.0; December 2014) by Tianna C. S. Floyd, Keith D. Wright, H. A. Russell III, J. Randy Beggs, Gary L. May, and T. Chris Oshima.

The purposes for the development of *SPSS: A Survival Guide for EPRS 8530 and EPRS 8540* are the same as the purposes for the development of this guide – to help students analyze data, interpret output, and report results – except that the focus is on SPSS software. EPRS 8530 and 8540 students interested in SPSS have been successfully using Floyd et al.'s guide for several years; however, to date, a similar guide has not been made available for SAS. This guide is intended to fill in that gap, using SAS 9.4, as many statistics students are interested in this powerful programming language.

It is entirely possible that students enrolled in these courses may wish to learn both programs. The simplest way to facilitate this is to share the sample research scenarios and datasets between the two guides. Therefore, unless otherwise noted, all of the scenarios and datasets herein are taken directly from the work of Floyd and her colleagues. Furthermore, as the two guides present the procedures for the same statistical models, with the same ultimate objectives, the structure and contents of this guide will have much in common with its predecessor; in some cases, verbatim reproduction may be observed.

The authors of this guide express their gratitude for the hard work and dedication that went in to the development and revision of *SPSS: A Survival Guide for EPRS 8530 and EPRS 8540.* Thank you for providing a thorough, high-quality model.

About This Guidebook

This guidebook was developed specifically for students taking statistical courses in the Educational Policy Studies Department of the College of Education and Human Development at Georgia State University. Anyone conducting research analysis who is new to using SAS may find this guide helpful.

This guidebook is organized in three main sections. The first section, Getting Started, provides a brief introduction to SAS 9.4. This section includes directions for you to install SAS; write, run, and save code; check your code for execution errors; and "clean" your SAS windows. The second section, Descriptive Statistics, will provide instruction related to the generation of measures of central tendency, measures of spread, Pearson's r for correlation, and frequency tables and histograms. In the third section, Inferential Statistics, you will learn to run analyses ranging from a one-sample t test to multiple regression and model building with the incorporation of assumption-checking methods.

The code herein was written using SAS 9.4, with default installation settings, in a Windows 10 environment; it is assumed that the reader is using this version of SAS (or a more current one) in Windows 10 or higher.

It is assumed that students already possess a basic knowledge of Windows and standard computer software (e.g., word processing programs). A working knowledge of any programming language will be helpful, but is not required. As the guidebook progresses from one analysis to another, certain levels of detail are omitted due to space limitations. (For example, explanation of the assignment of raw data to variable names need not be repeated for each successive statistical analysis once it has been introduced.) It is expected that the user will develop a *cumulative* working knowledge of SAS as the guidebook progresses.

The SAS code presented herein is limited to the procedures required for the statistical analyses being conducted. (For example, topics such as the manipulation of character data are omitted.) Of course, there are often multiple methods for achieving the same results; however, in most cases, only one way is presented. Readers wishing to learn SAS in depth are therefore referred to SAS courses provided by the SAS Institute, online resources, or print resources.

Every effort has been made to ensure that this guidebook is free from errors. If you should find any mistakes within this guide, please contact Theresa Dell-Ross (<u>tdellross1@student.gsu.edu</u>) or Dr. Chris Oshima (<u>oshima@gsu.edu</u>) so that corrections may be made.

Please note the following: SAS 9.4 is copyrighted 2012 by the SAS Institute, Inc. and Microsoft Windows® is a registered trademark of the Microsoft Corporation. Users of this guidebook are expected to obey all copyright laws of the United States, including software licensing agreements.

Getting Started with SAS 9.4

Installing SAS

SAS 9.4 is currently offered for free to Georgia State University students. To download and install SAS, go to the GSU Technology home page at <u>https://technology.gsu.edu/technology-services/services-for-you/it-services-for-students/</u>. Scroll down to the "Download Software" section, find SAS, and follow the directions.

Using SAS

When you open SAS, this is what you will see.

SAS SAS			$ \Box$ \times
File Edit View Tools Run Solutions Wind	ow Help		
✓ [l 🚔 🖬 🚝 🔃 🐰 🖻 🋍 🗠 🐌 🚉 * 🗙 🛈 🛷		
Explorer	Log - (Untitled)		
Contents of 'SAS Environment'	SAS/STAT 14.1		^
	SnS/ETS 14.1 SnS/1HL 14.1 SnS/01 14.1		
Libraries File Shortcuts Favorite Folders	NOTE: Additional host information:		
	X64_8HOME WIN 6.2.9200 Workstation		
This PC	NOTE: SAS initialization used: real time 1.42 seconds crutime 1.04 seconds		
	< c		•
	🖹 Editor - Untitled1		
			^
			~
	<		н. <
Results Q Explorer	🖹 Output - (Untitled) 📄 Log - (Untitled)	titled1	
		C:\Users\vandy	Ln 1, Col 1

The "Editor" window is where you will write and run your code. The "Log" window is where you will check to make sure that your code was executed properly. You can toggle back and forth using the Editor and Log tabs at the bottom of the SAS screen.

You may begin typing code in the Editor window. You may also open an existing code file by going to File > Open. To save your code, make sure you are in the Editor window and then go to File > Save As or File > Save. To run your code, highlight it and click on the icon of the running man.

£

Here is what you will see once you have written and run some code.

Notice that there is now a list of results in the left-hand window. There is also a "Results" window (with a Results tab at the bottom).

IT IS HIGHLY RECOMMENDED THAT YOU GET IN THE HABIT OF READING THE LOG WINDOW IMMEDIATELY AFTER YOU RUN CODE, EVERY TIME YOU RUN CODE, BEFORE YOU LOOK AT ANY OF THE RESULTS. It is possible that SAS will generate results, even if you made mistakes in your code, and you do not want to interpret or report results without first checking to make sure that the code was executed properly.

IN SAS, COLOR IS CRITICAL. When you type in your code, SAS automatically color-codes certain words. As you can see from the screenshot below, it colors some words in dark blue, light blue, green, teal, purple, and black. As you use this guide, make sure your colors match the colors you see in the code here. If your colors don't match the colors here, it is a clue that you may have made an error (e.g., forgetting a semicolon in the line above or misspelling a word).

🎫 SAS - [SA	S Guide Code.sa	5]								_		×
🔳 File Edi	t View Tools	Run Sol	utions Wi	ndow Help							- 5	2 ×
~			~ 🗅	🖻 🖬 🔤	🎒 🖪 🔏 🗉	à 🛍 🗠 🚺 🚉	×Χ	1 🧶				
Explorer			×		4 4							^
Contents of 'SA	S Environment				11 7							
	[<u></u>			13 9							
	네를	î		DIM.	7.5							
Libraries	File Shortcuts	Favorite		KON;								-
		Folders			PRINT DATA	=CAREGIVER;						
				- PROC	MEANS DATA	=CAREGIVER;						
				- PROC	CORR DATA=0	CAREGIVER PLOTS=	SCATTE	R(ELLIPSE=NONE);				-
This PC				RUN;								
				QUIT								-
				/**** /* De /* F1	scriptive sequency */	Statistics */	*****	*****	****	/		
				E PROC	FORMAT :							
					ALUE ANX FI	ΥT						
					0-9 = '(0-9'						
					10-19 =	'10-19'						
					20-29 =	20-29'						
					30-39 =	'30-39'						
					40-49 =	'40-49'						
					50-59 =	150-591						
				Ι,	ALUE DEP EN	- 60-69-; MT						
					0-4 = '(0-4'						
					5-9 = '	5-9'						~
				<							>	F.
Results	<u>ê</u> j	Explorer		🖪 Outpu	t - (Untitled)	E Log - (Untitled)		SAS Guide Code.sas				
										C:\Users\vandy\Dropbox\Documents\GSU\Dea Ln 1,	Col 1	

COLOR IS ALSO CRITICAL IN THE LOG WINDOW. When you check the Log window, you always want to see black and blue. The Log window will show your code in black. If there are any errors, they will be shown in maroon (red). If there are warnings, they will be shown in green. This screenshot shows an error and two warnings:

🎫 SAS - [Log - (Untitled)]	-	
File Edit View Tools Solutions Window	Help	- 8 ×
✓ Ď	🚅 🖬 🚔 🖻 🖄 🐘 🛍 🖉 🧐 🔀 🔕 🛛 🛪 🕐 🛷	
Results	<pre> DATA PLANT_HEIGHT; INFILE "C:\Plant_Height.CSV" FIRSTOBS=2 DSD=','; </pre>	^
Results Print: The SAS System Means: The SAS System Freq: The SAS System Division of the SAS System Print: The SAS System Print: The SAS System Print: The SAS System Print: The SAS System	23 ERROR 23-2: Invalid option name =. 55 INPUT SORT_NUMBER SITE GENUS_SPECIES \$ FAMILY \$ GROWTHFORM \$ 56 HEIGHT LOGHT COUNTRY \$ SITE NAME \$ LAT LONG ENTERED BY \$ 57 ALT TEMP DURN TEMP ISOTHERNI TEMP_SEAS TEMP_MAX_NARM 59 TEMP_MEAN_DRYUR TEMP_NEANLE TEMP_MEAN_LETOR 59 TEMP_MIN.COLD TEMP_ANN_RANCE TEMP_MEAN_LETOR 50 Rain_NERTH Rain_DRYUR TEMP_MEAN_LETOR Rain_DRYUR 50 Rain_NERTH Rain_SEAS Rain_NETOR RAIN_DRYUR 50 KEEP HEIGHT LOGHT TEMP ANAINS SEAS Rain_NETOR Rain_DRYUR 50 Rain_NETH Rain_DRYUR TEMP MAIN. 50 Rain_NETH Rain_DRYUR TEMP MAIN. 50 Rain_NETH Rain_DRYUR TEMP MAIN. 50 Rain_NETH Rain_SEAS Rain_NETOR RAIN_DRYUR 50 ALT TEMP_MEAN OF TEMP MEAN_LETOR RAIN_DRYUR 51 TEMP_MEAN OF TEMP ANAINS SEAS Rain_NETOR RAIN_DRYUR 52 KEEP HEIGHT LOGHT TEMP ANAINS SEAS Rain_NETOR RAIN_DRYUR 53 RAIN_NETH RAIN_DRYUR TEMP MAIN; 54 NOTE: The SAS System stopped processing this step because of errors. 55 NAMENING: Data set MORK.PLANT_HEIGHT may be incomplete. When this step was stopped there were 56 observations and 4 variables. 57 NOTE: The data set MORK.PLANT_HEIGHT may be incomplete. When this step was stopped. 57 NOTE: DATA statement used (Total process time): 57 real time 0.01 seconds 58 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 59 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 59 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 OF SEAS State 0.00 seconds 50 NOTE: The statement were 0.00 seconds 50 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data set WORK.PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data set WORK PLANT_HEIGHT. 50 NOTE: There were 10 observations read from the data	
Results Q Explorer	Cutput - (Untitled)	
NOTE: Lines have been cleared	C () Users) use d () Deep herd Decrymental () () Deep	

All other notes will be shown in blue. In most cases, blue means success. However, you must be careful. Blue does not mean success 100% of the time. For example, look at the following:

Notice that "178 records were read" but the new dataset has "172 observations." There was, in fact, an error here (having to do with missing data in the .CSV file that was being read in), but SAS did not recognize it as such. ALWAYS read the Log window before interpreting and reporting results!!

Keeping Your Windows Manageable

Sometimes you may run the same code over and over as you troubleshoot, and you may become overloaded with output in Results window and notes in the Log window. It is easy to fix this. If you want to clear everything out, simply do the following.

1. In the left-hand window, click on the word "Results" at the top of the list of all the output. Click "Delete" on your keyboard and answer "Yes."

2. Select the "Log" window tab, go to "Edit," and select "Clear all."

SAS - [Log - (Untitled)]	- t	-
File Edit View Tools Solutions	Window Help	_ 8 ×
✓ 🔽 🗸 Undo Ctrl+Z	🗹 📄 🖬 👙 🖪 🐇 ங 📾 🗠 🖓 👹 😫 🔍 🛪 🛈 🧇	
Results	Image: State of the state	^
	55 PROC FREQ DATA-CAREGIVER; 56 FORMAT DEPRESSION DEP_FHT.; 57 FORMAT DEPRESSION DEP_FHT.; 58 RUN; NOTE: There were 19 observations read from the data set WORK.CAREGIVER. NOTE: There were 19 observations read from the data set WORK.CAREGIVER. NOTE: There were 19 observations read from the data set WORK.CAREGIVER. NOTE: There were 19 observations read from the data set WORK.CAREGIVER. NOTE: there were 19 observations read from the data set WORK.CAREGIVER. NOTE: there were 19 observations read from the data set WORK.CAREGIVER. NOTE: there were 19 observations read from the data set WORK.CAREGIVER. VIII: 0.01 seconds cpu time 0.01 seconds	>
	Charles de la constante de la	
CTI Daw Ma	Todouce (ondied) Todo (ondied) A SAS Guide Codesas	

3. Continue working.

Descriptive Statistics Research Scenario

A counselor working with a group of caregivers of patients living with a terminal illness is interested in forming a support group to share experiences and therefore reduce the sense of isolation often associated with catastrophic illness. The counselor, working with hospital staff, administers a depression and anxiety inventory to each caregiver that has volunteered for the program. The counselor feels that knowing the levels of depression and anxiety within the group will help in the design of an effective intervention program. The scores obtained from the administration of the two inventories are given below.

ANXIETY	DEPRESSION
22	16
12	8
68	33
10	6
5	5
53	24
44	18
37	17
0	2
21	14
64	31
33	17
55	30
18	13
3	3
4	4
11	7
13	9
7	5

Descriptive Statistics

SAS Code for Measures of Central Tendency, Measures of Spread, and Correlation

(1) (2) (3)	DATA CAREGIVER; INPUT ANXIETY DEPRESSION; LINES; 22 16 12 8 68 33 10 6 5 5 53 24 44 18 37 17 0 2 21 14 64 31 33 17 55 30 18 13 3 3 4 4 11 7
(4)	11 7 13 9 7 5 RUN;
(5) (6) (7) (8) (9)	<pre>PROC PRINT DATA=CAREGIVER; PROC MEANS DATA=CAREGIVER; PROC CORR DATA=CAREGIVER PLOTS=SCATTER(ELLIPSE=NONE); RUN; QUIT;</pre>

- (1) The DATA step creates a new dataset and assigns it the specified name, CAREGIVER in this case.
- (2) The INPUT statement creates the variable names and assigns the order of the variables to the new dataset. This command also assigns a variable type to each new variable. The default variable type, which applies to both variables in this case, is *numeric*. If a *character* variable is being created, put a dollar sign (\$) in back of it. For example, if ANXIETY was a character variable, the code would read INPUT ANXIETY \$ DEPRESSION.
- (3) LINES indicates that the data are being entered manually (as opposed to read in or imported from a file). The data are listed beginning on the next line. Make sure that you enter the data in the same order that you entered the variable names in the INPUT statement (i.e. type the anxiety score first, followed by the depression score, because ANXIETY comes first and DEPRESSION comes second). *Please note that the data do NOT include a semicolon (;) at the end.*

- (4) This RUN statement is optional, because SAS automatically ends the step that is currently running each time SAS encounters a new DATA or PROC step. Please note that, for some mysterious reason, this RUN statement does not turn dark blue like other RUN statements.
- (5) PROC PRINT is the "proc"edure that returns all of the raw data from CAREGIVER to your output window. Making use of this procedure is optional, but it's recommended when you enter data manually; it is a built-in check for data entry errors.
- (6) PROC MEANS is the procedure that outputs the sample size, mean, standard deviation, minimum, and maximum for each numeric variable in CAREGIVER.
- (7) PROC CORR is the procedure that runs the correlations for each pair of numeric variables in CAREGIVER, as well as the *p* value for each correlation. It also returns the same descriptive statistics as PROC MEANS (rendering that procedure redundant). In this procedure, a scatterplot is also requested, with the default prediction ellipses omitted.
- (8) Each time SAS encounters a new DATA or PROC step, SAS automatically ends the step that is currently running. Because there are no more DATA or PROC steps in this code, the RUN step is needed in order to force SAS to end the PROC CORR step, effectively ending this code. The RUN step can be used at the end of any DATA or PROC step, not just the last one in the code. It is generally good practice to include RUN at the end of each DATA or PROC step.
- (9) In SAS, some procedures will not end using RUN alone; a QUIT step is also required. If you forget to include the QUIT step, and SAS shows a procedure as still running at the top of the window, you can simply type "QUIT;" (without the quotation marks), then highlight and run this code; it will end any procedure still running. It is simpler and, therefore, recommended to get in the habit of including a QUIT statement at the end of your code.

	Descriptive Statistics SAS Code for Frequency
)) .) ?)	PROC FORMAT; VALUE ANX_FMT 0-9 = '0-9' 10-19 = '10-19' 20-29 = '20-29' 30-39 = '30-39' 40-49 = '40-49' 50-59 = '50-59' 60-69 = '60-69'; VALUE DEP_FMT 0-4 = '0-4' 50 = 04
	10-14 = '10-14' 15-19 = '15-19' 20-24 = '20-24' 25-29 = '25-29' 30-34 = '30-34'; RUN;
))))	<pre>PROC FREQ DATA=CAREGIVER; FORMAT ANXIETY ANX_FMT.; FORMAT DEPRESSION DEP_FMT.; RUN;</pre>
)))))	<pre>PROC UNIVARIATE DATA=CAREGIVER; VAR ANXIETY; HISTOGRAM ANXIETY / VSCALE=COUNT ENDPOINTS = 0 TO 70 BY 10 ODSTITLE='Frequency of Anxiety Scores' VAXISLABEL='Frequency'; LABEL ANXIETY='Anxiety'; RUN;</pre>
)	<pre>PROC UNIVARIATE DATA=CAREGIVER; VAR DEPRESSION; HISTOGRAM DEPRESSION / VSCALE=COUNT ENDPOINTS = 0 TO 35 BY 5 ODSTITLE='Frequency of Depression Scores' VAXISLABEL='Frequency'; LABEL DEPRESSION='Depression';</pre>
))	RUN; QUIT;

PROC FORMAT is used to create guidelines for formatting a variable. In this case, the procedure will create a format that specifies the ranges, or bins, for the frequency analysis. Your bins should always include the minimum observed value for the variable, the maximum observed value, and all values in between *even if unobserved*. For example, if

your variable X has values of 1, 2, 3, 4, and 10, you need to make sure that (a) your lowest bin includes the value 1, (b) your highest bin includes the value 10, and (c) you have bins for 5, 6, 7, 8, and 9, even though X does not include these values. If you omit bins for 5-9, your X data will be misrepresented.

- (11) The VALUE statement assigns a name to the format you are creating. In this case, we are creating the formatting for ANXIETY, which is reflected in the name assigned here (ANX_FMT).
- (12) Beginning on this line, each bin is created and assigned a label. Values of 0-9 (on the left side of the equal sign), for example, are assigned a label of "0-9" (on the right side of the equal sign). Because the label is contained inside quotation marks, you can include any character in the label (e.g., <, >, \$, letters/words, etc.). For example, you could write: 0-9 = '≤ 9'. ANX_FMT has no impact on your output yet, because it has not been applied to a particular variable.
- (13) The VALUE statement assigns a name to the format you are creating. In this case, we are creating the formatting for DEPRESSION, which is reflected in the name assigned here (DEP_FMT). Following this statement, you will see the creation and labeling of the bins, as in (12).
- (14) PROC FREQ generates a frequency table for each numeric variable in CAREGIVER.
- (15) The FORMAT statement tells SAS that you want a frequency table, but that you need to override the default frequency table format. The default for numeric variables is to include a bin for every single observed value. As we want the frequency by ranges, this statement is used to apply the ANX_FMT range values and labels to ANXIETY for this particular analysis. (It does NOT change the actual ANXIETY data.) *Note that a period* (.) *follows ANX_FMT. The code will not work properly if you omit the period*.
- (16) Just as in (15), the FORMAT statement overrides the default frequency table, applying the DEP_FMT values and labels to DEPRESSION. *Note that a period (.) follows DEP_FMT. The code will not work properly if you omit the period.*
- (17) PROC UNIVARIATE provides descriptive statistics for each variable, and renders PROC MEANS redundant. In fact, PROC UNIVARIATE provides a greater variety of descriptive statistics than PROC MEANS, including median, mode, skewness, and kurtosis. PROC UNIVARIATE is used here to generate histograms.
- (18) The VAR statement limits the analysis in the PROC UNIVARIATE step to ANXIETY (i.e. DEPRESSION is omitted).
- (19) The HISTOGRAM statement creates histograms for the specified variable(s). Here, a histogram is created for ANXIETY. The forward slash (/) is used to separate the call for a histogram of ANXIETY from the options that follow.
- (20) VSCALE is the first option in relation to the histogram being created. The default scale for the vertical axis is the frequency *percent* (e.g., a particular value occurs 20% of the time). VSCALE overrides this and sets the vertical axis to the frequency *count* (e.g., a particular value occurs 5 times).

- (21) The ENDPOINTS option sets the bin ranges, in this case from 0 to 70 in increments of 10. (This matches ANX_FMT.)
- (22) The ODSTITLE option assigns a title to the histogram.
- (23) The VAXISLABEL option overrides the default vertical axis label ("Count") and assigns a different label. This is optional; you can always use the default label. As this is the last option in the code, it ends with a semicolon (;).
- (24) In order to change the horizontal axis label, the LABEL statement is used. This is optional; the default is the name of the variable being represented in the histogram (ANXIETY in this case).
- (25) Here, PROC UNIVARIATE is used to create a histogram for DEPRESSION. The code matches that of the PROC UNIVARIATE code for ANXIETY, except for the variable included (DEPRESSION in this case), and title, labels, and bin ranges of the histogram. (The ENDPOINTS option sets the bin ranges from 0 to 35 in increments of 5; this matches DEP_FMT.)
- (26) Remember that it is generally good practice to include RUN at the end of each DATA or PROC step; in this code it is used to end PROC FORMAT, PROC FREQ, and PROC UNIVARIATE. You may decide not to use RUN in the first two instances – although this is NOT recommended – but you MUST use it at the end of the code.
- (27) Remember that some procedures will not end using RUN alone; a QUIT step is also required. Therefore, you should include it at the end of every code.

			eriptive Statistics elected Output
Obs	ANXIETY	DEPRESSION	It is always a good idea to verify that your data have been input/imported
1	22	16	correctly
2	12	8	concerty.
3	68	/ 33	
4	10	6	
5	5	5	
6	53	24	
7	44	18	
8	37	17	
9	0	2	
10	21	14	
11	64	31	
12	33	17	
13	55	30	
14	18	13	
15	3	3	
16	4	4	
17	11	7	

The MEANS Procedure

Variable	N	Mean	Std Dev	Minimum	Maximum
ANXIETY	19	25.2631579	21.9894978	0	68.000000
DEPRESSION	19	13.7894737	9.8464824	2.0000000	33.000000

There is a significant relationship between ANXIETY and DEPRESSION, r = .982, p < .001.

ANXIETY	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0-9	5	26.32	5	26.32
10-19	5	26.32	10	52.63
20-29	2	10.53	12	63.16
30-39	2	10.53	14	73.68
40-49	1	5.26	15	78.95
50-59	2	10.53	17	89.47
60-69	2	10.53	19	100.00

The FREQ Procedure

DEPRESSION	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0-4	3	15.79	3	15.79
5-9	6	31.58	9	47.37
10-14	2	10.53	11	57.89
15-19	4	21.05	15	78.95
20-24	1	5.26	16	84.21
30-34	3	15.79	19	100.00

	The UNIVAR Variable: AN	ATE Procedure XIETY (Anxiety)		ANXIETY
	Мо	ments		1
N	19	Sum Weights	19	
Mean	25.2631579	Sum Observations	480	
Std Deviation	21.9894978	Variance	483.538012	2
Skewness	0.76009557	Kurtosis	-0.7861464	4
Uncorrected SS	20830	Corrected SS	8703.68421	í.
Coeff Variation	87.041762	Std Error Mean	5.04473677	6

	Basic	Statistical Measures	
Loc	ation	Variability	1
Mean	25.26316	Std Deviation	21.98950
Median	18.00000	Variance	483.53801
Mode		Range	68.00000
		Interquartile Range	37.00000

	Va	The UN ariable: Di	VAR	IATE Procedure SSION (Depressi	on)	/	_	-[DEF	RESSIO	N
			Мо	ments	-						
N			19	Sum Weights			19				
Mean	ı	13.789	4737	Sum Observatio	ons		262				
Std D	eviation	9.8464	8244	Variance		96.953	2164				
Skew	/ness	0.7403	2431	Kurtosis	-0.5527289						
Unco	acorrected SS 5358 Corrected SS			1745.15789							
Coeff	f Variatio	n 71.405	7887	Std Error Mean		2.2589	3799				
[Basic S	Statis	tical Measures							
	Location Variability										
	Mean	13.78947	Std	Deviation 9		.84648					
	Median	13.00000	Var	ance 96.		.95322					
	Mode	5.00000	Ran	ige	ge 31.						
			Inte	erquartile Range	13	.00000		-	-	Special	N

Special Note

Note: The mode displayed is the smallest of 2 modes with a count of 2.

Inferential Statistics One-Sample *t* Test Research Scenario

Suppose that Professor Coffey learns from a national survey that the average high school student in the United States spends 6.75 hours each week exploring particular websites on the internet. The professor is interested in knowing how internet use among students at the local high school compares with this national average. Is local use more than, or less than, this average? Professor Coffey randomly selects a sample of 10 students. Each student is asked to report the number of hours he or she spends exploring these websites on the internet in a typical week during the school year. The data appear below.

Student	Number of Hours
1	6
2	9
3	12
4	3
5	11
6	10
7	18
8	9
9	13
10	8

Source of Data and Scenario: Coladarci, T., & Cobb, C. (2014). *Fundamentals of Statistical Reasoning in Education* (4th ed.). Hoboken, NJ: John Wiley & Sons, Inc.

(1)

(2)

(3)

(4)

```
Inferential Statistics
                          One-Sample t Test
                              SAS Code
DATA STUDYHOURS;
      INPUT HOURS;
      LINES;
            6
            9
            12
            3
            11
            10
            18
            9
            13
            8
RUN;
PROC PRINT DATA=STUDYHOURS;
RUN;
PROC UNIVARIATE DATA=STUDYHOURS;
      VAR HOURS;
      HISTOGRAM HOURS /
            VSCALE=COUNT
            ENDPOINTS = 0 TO 20 BY 1
            ODSTITLE='Frequency of Study Hours'
            VAXISLABEL='Frequency';
      LABEL HOURS='Hours';
RUN;
PROC TTEST DATA=STUDYHOURS PLOTS(shownull)=interval H0=6.75;
      VAR HOURS;
      TITLE "One-Sample t Test: Study Hours";
RUN;
TITLE;
QUIT;
```

- PROC TTEST may be used for one-sample *t* tests, as well as independent and dependent *t* tests. The PLOTS(shownull) option will add a reference line for the null hypothesis value (i.e. the national average of 6.75). Setting "H0" to 6.75 will make this a one-sample *t* test.
- (2) The one-sample t test is being conducted for the variable HOURS.
- (3) An optional title is being assigned to the output. Although this is not necessary here, it becomes very helpful in more advanced analyses that contain a lot of output, which may easily become confusing. If you do not want a title, simply remove this line of code.
- (4) *The title that was created in (3) will be applied to all future SAS output indefinitely.* For example, if you were to run PROC MEANS or PROC FREQ after this code, it would label the output "One-Sample t Test: Study Hours," even though they have nothing to do with *t* tests. You must take one of three explicit actions to clear this title: (a) exit and restart

SAS, (b) assign a new title, or (c) type "TITLE;" (without the quotation marks) to reset the title to SAS defaults. Option C is being enacted here to reset default titles.

Inferential Statistics One-Sample t Test Selected Output

Obs	HOURS
1	6
2	9
3	12
4	3
5	11
6	10
7	18
8	9
9	13
10	8

The UNIVARIATE Procedure Variable: HOURS (Hours)

Moments					
Ν	10) Sum Weights			
Mean	9.9	Sum Observations	99		
Std Deviation	4.06748626	Variance	16.5444444		
Skewness	0.36258643	Kurtosis	1.18673013		
Uncorrected SS	1129	Corrected SS	148.9		
Coeff Variation	41.0857198	Std Error Mean	1.28625209		

Basic Statistical Measures					
Location Variability					
Mean	9.900000	Std Deviation 4.00			
Median	9.500000	Variance	16.54444		
Mode	9.000000	Range	15.00000		
		Interquartile Range	4.00000		

Inferential Statistics Independent *t* Test Research Scenario

A training manager believes that a new interactive computer-based training package will help improve the production rate of order assemblers. She arranges for a production area of 21 experienced employees to complete the new training package over a six-week period. Another group from the production area of 23 employees received no additional training. The following are the average production rates per person per hour based on a 12-week period following the training.

Training Group (T)	Control Group (C)
26	44
45	45
60	57
73	28
45	64
51	39
63	35
46	43
69	21
51	56
55	22
58	87
61	48
54	12
64	19
56	62
59	55
35	44
48	39
45	44
59	57
	30
	30

Inferential Statistics Independent t Test SAS Code

(1) (2) (3)	PROC	<pre>FORMAT; VALUE \$TRTMNT_FMT "T"="Training" "C"="Control";</pre>
	RUN;	
(4)	DATA	PRODUCTION; INPUT TREATMENT \$ PRODRATE @@; FORMAT TREATMENT \$TRTMNT FMT :
(3)		LINES;
		T 26 T 45 T 60 T 73 T 45 T 51 T 63 T 46 T 69 T 51
		T 55 T 58 T 61 T 54 T 64 T 56 T 59 T 35 T 49 T 45
		T 59 C 44 C 45 C 57 C 28
		C 64 C 39 C 35 C 43 C 21
		C 56 C 22 C 87 C 48 C 12
		C 19 C 62 C 55 C 44 C 39
	RUN;	C 44 C 57 C 30 C 30
	PROC RUN;	PRINT DATA=PRODUCTION;
(6)	PROC	GLM DATA=PRODUCTION PLOTS=DIAGNOSTICS;
('/)		CLASS TREATMENT;
(0)		MODEL PRODUCTE TREATMENT, MEANS TREATMENT / HOVTEST=LEVENE (TYPE=ABS):
(10)		TITLE "Independent t Test: Production Rate";
	RUN;	
(11)	TITLE QUIT;	S;

- (1) The PROC FORMAT step is used here to create labels for the TREATMENT codes.
- (2) The VALUE statement assigns a name to the format you are creating, TRTMNT_FMT in this case, and matches each code with a label. The dollar sign (\$) at the front of TRTMNT_FMT indicates that this format will be applied to a character variable. (If the \$ is absent, SAS defaults to applying the format to a numeric variable.) *Remember to use quotation marks ("") with character data and labels.*
- (3) Beginning on this line, individual labels are assigned. For example, "T" is assigned the label "Training." TRTMNT_FMT has no impact on your output yet, because it has not been applied to a particular variable.
- (4) The INPUT statement creates a character variable TREATMENT (the \$ that follows it indicates that it is a character variable) and a numeric variable PRODRATE (the lack of \$

means that it defaults to numeric). TREATMENT is coded as "T" for employees who participated in the training package and "C" for those in the control group. PRODRATE is the rate of production. The @@ symbols tell SAS that there are multiple observations on a single line of data. For example, the first line of data (T 26 T 45 T 60 T 73 T 45) contains the data for five observations (i.e. employees). This is optional, but tends to save space in longer datasets.

- (5) The FORMAT statement is used to apply the labels created in TRTMNT_FMT (1) to TREATMENT. *Note that a period* (.) *follows TRTMNT_FMT; the code will not work properly if you omit the period.*
- (6) PROC GLM (General Linear Model) is used to conduct regression analysis; a *t* test is one specific type of regression analysis. In this case, an independent *t* test is being conducted on the PRODUCTION data. The diagnostic plots have also been requested here; these will be used to verify the tenability of the *t* test assumptions (i.e. that the assumptions have been met). Specifically, these plots will help when verifying that the data are normally distributed.
- (7) The CLASS statement is used to identify variables with nominal data (as opposed to continuous data); in other words, use a CLASS statement to identify categorical variables. In this case, you have the categorical/grouping variable TREATMENT.
- (8) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV). Again, the DV goes on the left of the equal sign and the IV goes on the right.
- (9) The MEANS statement requires SAS to compute the means for each group in TREATMENT. The option HOVTEST=LEVENE calls for the Levene's Test of Homogeneity of Variances, to test the assumption that the groups have equal variances. There are multiple homogeneity tests available; Levene's Test is the default. There are two methods for calculating Levene's statistic: using the absolute residuals (TYPE=ABS) or the squared residuals (TYPE=SQUARE, the default). As the users of this guide may be more familiar with SPSS or may be referencing SPSS: A Survival Guide for EPRS 8530 and EPRS 8540, the TYPE option is set to the method used by SPSS: ABS.
- (10) An optional title is being assigned to the output. Although this is not necessary here, it becomes very helpful in more advanced analyses that contain a lot of output, which may easily become confusing. If you do not want a title, simply remove this line of code.
- (11) The title that was created in (10) will be applied to all future SAS output indefinitely. For example, if you were to run PROC MEANS or PROC FREQ after this code, it would label the output "Independent t Test: Production Rate," even though they have nothing to do with *t* tests. You must take one of three explicit actions to clear this title: (a) exit and restart SAS, (b) assign a new title, or (c) type "TITLE;" (without the quotation marks) to reset the title to SAS defaults. Option C is being enacted here to reset default titles.
Inferential Statistics Independent *t* Test Selected Output

Obs	TREATMENT	PRODRATE
1	Training	26
2	Training	45
3	Training	60
4	Training	73
5	Training	45
6	Training	51
7	Training	63
8	Training	46
9	Training	69
10	Training	51
11	Training	55
12	Training	58
13	Training	61
14	Training	54
15	Training	64
16	Training	56
17	Training	59
18	Training	35
19	Training	48
20	Training	45
21	Training	59
22	Control	44
23	Control	45
24	Control	57

It is always a good idea to verify that your data have been input/imported correctly.

Class L	evel Inf	ormation	
Class	Levels	Values	/
TREATMENT	2	Control Tra	ining

It is always a good idea to verify that your data have been input/imported correctly.

Independent t Test: Production Rate

The GLM Procedure

Dependent Variable: PRODRATE

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1286.08997	1286.08997	5.99	0.0186
Error	42	9016.45549	214.67751		
Corrected Total	43	10302.54545			

	R-Squa	re	Coeff Var	Ro	ot MSE	PRODE	ATE Mea	n
	0.1248	32	30.64081	14	.65188		47.8181	8
Sour	се	DF	Type I	SS	Mean	Square	F Value	Pr > F
TREA	TMENT	1	1286.089	968	1286	089968	5.99	0.0186
Sour	се	DF	Type III	SS	Mean	Square	F Value	Pr > F
TREA	TMENT	1	1286.089	968	1286	089968	5.99	0.0186

There was a significant difference in production rates between the training and control groups, t(42) =2.447, p = .019.

> PROC GLM reports *F* values, not *t* values. The conversion is very simple: $t^2 = F$.

For an independent *t* test, the degrees of freedom are equal to $n_1 + n_2 - 2$. In this case, df = 21 + 23 - 2 = 42.

The assumption of homogeneity of variances was found to be tenable, F(1, 42) = 2.87, p = .098.

		The GLM Pr	rocedure		
Levene ANO	e's Te VA c	est for Homogenei of Absolute Deviat	ty of PRODRAT	E Varianc Means	е
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
TREATMENT	1	239.6	239.6	2.87	0.0976
Error	42	3505.1	83.4559		

Independent t Test: Production Rate

The GLM Procedure

Level of		PRODRATE		
TREATMENT	N	Mean	Std Dev	
Control	23	42.6521739	17.3116059	
Training	21	53.4761905	11.0073568	
			Grour	
		4	Group	

Inferential Statistics Dependent *t* Test Research Scenario

A sports psychologist was interested in testing the effect of a simple relaxation technique on college basketball players' free throw shooting accuracy. Each player was asked to shoot 20 consecutive free throws and the number of successful attempts was recorded. The players were then trained to use a simple five-second relaxation technique while preparing to shoot a free throw. The players then returned to the court and shot 20 consecutive free throws again. The resulting data are given below.

Pre-Training	Post-Training
12	13
15	15
9	11
16	15
12	15
15	18
17	17
10	12
12	13
14	17

Inferential Statistics Dependent t Test SAS Code

```
DATA THROWS;
            INPUT THROWS PRE THROWS POST @@;
            LINES;
                  12 13 15 15 9 11
                  16 15 12 15 15 18
                  17 17 10 12 12 13
                  14 17
      RUN;
      PROC PRINT DATA=THROWS;
      RUN;
(1)
      PROC MEANS DATA=THROWS;
      RUN;
(2)
      PROC TTEST DATA=THROWS PLOTS(SHOWH0)=INTERVAL;
(3)
            PAIRED THROWS PRE*THROWS POST;
            TITLE "Dependent t Test: Free Throws";
      RUN;
      TITLE;
      QUIT;
```

- (1) PROC MEANS provides the means and standard deviations for each variable in the THROWS dataset (THROWS_PRE and THROWS_POST).
- (2) PROC TTEST will perform a *t* test on the THROWS data. PROC TTEST includes several useful plots in the output by default. The SHOWH0 option shows the null hypothesis (H₀) critical value in the appropriate plots; the INTERVAL option adds an additional plot that will aid in interpreting the results. [*Note: PROC TTEST can also be used with independent* t *tests. The reason that it was omitted from the previous section is because PROC TTEST does not offer Levene's Test to assess the homogeneity of variances assumption (it uses a different test). Therefore, PROC GLM, which defaults to Levene's Test, was used.]*
- (3) The PAIRED statement makes this a **dependent** *t* test. The difference scores are calculated as the score on the left of the asterisk (*) minus the score on the right of the asterisk (*). In this case, the analysis is THROWS_PRE minus THROWS_POST. This may seem backwards, as the resulting difference values will be negative if the number of free throws increases after the treatment. The reason they have been placed in this order is so that THROWS_PRE is placed on the *x*-axis and THROWS_POST is placed on the *y*-axis in applicable output graphs. The negative sign on the difference values and the corresponding *t* value can be disregarded. Please note that you can reverse this order if

you prefer; the only consequence will be the reversal of the variables on the axes of the resulting plots.

Inferential Statistics Dependent t Test Selected Output

Obs	THROWS_PRE	THROWS_POST
1	12	13
2	15	15
3	9	11
4	16	15
5	12	15
6	15	18
7	17	17
8	10	12
9	12	13
10	14	17

The MEANS Procedure

Variable	N	Mean	Std Dev	Minimum	Maximum
THROWS_PRE	10	13.2000000	2.6161889	9.0000000	17.0000000
THROWS_POST	10	14.6000000	2.3190036	11.0000000	18.0000000

43

This vertical gray line is the mean difference of zero (i.e. the value being tested in the null hypothesis).

Inferential Statistics One-Way ANOVA Research Scenario

A direct marketer of insurance wanted to evaluate the effect of age on the response rate to a new insurance product. Below are the response rates per 1,000 mailings by age group from 12 different metropolitan areas.

Young	Middle-Aged	Elderly
25	30	25
27	29	22
23	29	27
24	31	23
23	28	24
24	31	25
22	29	23
25	32	22
21	30	21
24	29	22
21	28	24
23	31	23

	Inferential Statistics One-Way ANOVA SAS Code						
PRO ((1))	<pre>DC FORMAT; VALUE AGE_FMT 1="1. Young" 2="2. Middle-Aged" 3="3. Elderly";</pre>						
RUN	N;						
DAT	<pre>INSURANCE; INPUT AGE RATE @@; FORMAT AGE AGE_FMT.; LINES;</pre>						
	1 25 1 27 1 23 1 24 1 23 1 24 1 22 1 25 1 21 1 24 1 2	21 1 23					
	2 30 2 29 2 29 2 31 2 28 2 31 2 29 2 32 2 30 2 29 2 2 3 25 3 22 3 27 3 23 3 24 3 25 3 23 3 22 3 21 3 22 3 2	28 2 31 24 3 23					
RUN	N;						
PRO RUN	DC PRINT DATA=INSURANCE; N;						
PRO (2)	OC GLM DATA=INSURANCE PLOTS=DIAGNOSTICS; CLASS AGE; MODEL BATE=ACE:						
1)	MODEL RAIL-AGE, MEANS AGE / HOVTEST=LEVENE(TYPE=ABS);						
5)	LSMEANS AGE / PDIFF=ALL ADJUST=TUKEY;						
RUN	TITLE "One-Way ANOVA: Insurance Response Rate"; N;						
RUN TIT:	N; FLE; TT-						

- (1) When labels are applied to the values (code numbers or letters) of a variable, *the output will show these labels and their corresponding data in alphabetical order*. In this case, AGE is coded as 1 = "Young," 2 = "Middle," and 3 = "Elderly." If these labels were used in the VALUE statement (instead of the labels shown in the code above), then the output would appear in the order "Elderly," "Middle," and "Young" (i.e. alphabetical order). This may make the output confusing for the reader, who would expect the axis displaying AGE to go from youngest to oldest. The easiest way to correct this is to include the code number in the label (e.g., "1. Young"), as "1" comes first in alphabetical order, followed by "2. Middle-Aged" and "3. Elderly." Now, alphabetical order and logical order will match.
- (2) The CLASS statement identifies AGE as a nominal/categorical/grouping variable.
- (3) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV).
- (4) The MEANS statement requires SAS to compute the means for each group in AGE. The option HOVTEST=LEVENE calls for the Levene's Test of Homogeneity of Variances, to test the assumption that the groups have equal variances. There are multiple homogeneity

tests available; Levene's Test is the default. There are two methods for calculating Levene's statistic: using the absolute residuals (TYPE=ABS) or the squared residuals (TYPE=SQUARE, the default). As the users of this guide may be more familiar with SPSS or may be referencing *SPSS: A Survival Guide for EPRS 8530 and EPRS 8540*, the TYPE option is set to the method used by SPSS: ABS.

(5) *The LSMEANS statement shown here is only required if the one-way ANOVA is found to be significant.* The LSMEANS statement will perform Tukey's HSD post-hoc testing by AGE. The PDIFF=ALL option requests the *p* values for each of the pairwise comparisons. If post-hoc testing is not required, you may remove this line of code.

Inferential Statistics One-Way ANOVA Selected Output

Obs	AGE	RATE
1	1. Young	25
2	1. Young	27
3	1. Young	23
4	1. Young	24
5	1. Young	23
6	1. Young	24
7	1. Young	22
8	1. Young	25
9	1. Young	21
10	1. Young	24
11	1. Young	21
12	1. Young	23
13	2. Middle-Aged	30
14	2. Middle-Aged	29
15	2. Middle-Aged	29
16	2. Middle-Aged	31
17	2. Middle-Aged	28
18	2. Middle-Aged	31
19	2. Middle-Aged	29
20	2. Middle-Aged	32
21	2. Middle-Aged	30
22	2. Middle-Aged	29

One-Way ANOVA: Insurance Response Rate

	The GLM Procedure													
Dependent Variable: RATE												/		
Sourc	e		D	F	Sum of Sq	ua	res	Mean	S	quare	F۷	alue	Ρ	r > F
Mode	1			2	316.72222			158.3611111			63.60		<	0001
Error			3	3	82.16	66	667	2.	2.4898990					
Error Corrected Total R-S		3	5	398.88	88	889	9							
						_								
	R-S		Squ	are	e Coeff Va		Roo	t MSE	R	ATE M	ean			
0.7		794	011	6.17455		3 1.577941			25.55556					
		_		_		_					_		_	
	Sourc	e	DF Type I SS Mean Square F Value Pr > F		F									
	AGE 2 316		6.7222222	158.3611111		1	63.60		<.0001					
	Sourc	e	DF	Ту	ype III SS	N	lean	Squar	е	F Value		Pr > F		
	AGE		2	316	6.7222222		158	361111	1	63.	60	<.000	1	

There was a significant effect of AGE on the response rate, F(2, 33) = 63.60, p < .001.

The assumption of homogeneity of variances was found to be tenable, F(2, 33) = 0.30, p = .741.

		The GLM	Procedure		
L	even NOV	e's Test for Homo A of Absolute Devi	geneity of RATE iations from Gro	Variance oup Mean	9 S
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
AGE	2	0.4738	0.2369	0.30	0.7411
Error	33	25.8588	0.7836		

One-Way ANOVA: Insurance Response Rate

The GLM Procedure

Level of		RATE					
AGE	N	Mean	Std Dev				
1. Young	12	23.5000000	1.73205081				
2. Middle-Aged	12	29.7500000	1.28805703				
3. Elderly	12	23.4166667	1.67648622				

Inferential Statistics Two-Way ANOVA with Nonsignificant Interaction Research Scenario

A marketing manager for a supermarket chain was interested in the effect of both retail price and display location on a new promotional line of cookies. A group of 24 stores with matching store volume, layout, and customer demographics was split at random into 6 groups of 4 stores each. One group was assigned to each of the 6 combinations of retail price (regular retail vs. discounted retail) and display location (entrance aisle, cookie aisle, and checkout). Below are the average weekly unit sales by store over a 13-week period.

Drigo	Display Location							
rnce	1. Entrance	2. Cookies	3. Checkout					
	38	28	21					
1 Dogular Datail	31	25	32					
1. Regulal Retail	27	23	30					
	33	20	22					
	35	22	19					
2 Discounted Poteil	21	24	15					
2. Discouilleu Ketaii	39	16	25					
	30	17	20					

Inferential Statistics Two-Way ANOVA with Nonsignificant Interaction SAS Code

```
PROC FORMAT;
            VALUE PRICE_FMT
                  1="1. Regular"
                  2="2. Discounted";
            VALUE LOC FMT
                  1="1. Entrance"
                  2="2. Cookie Aisle"
                  3="3. Checkout";
     RUN;
     DATA NEW COOKIES;
(1)
            INPUT PRICE LOCATION SALES @@;
            FORMAT PRICE PRICE FMT. LOCATION LOC FMT.;
(2)
            LINES;
                  1 1 38 1 1 31 1 1 27 1 1 33
                  1 2 28 1 2 25 1 2 23 1 2 20
                  1 3 21 1 3 32 1 3 30 1 3 22
                  2 1 35 2 1 21 2 1 39 2 1 30
                  2 2 22 2 2 2 2 4 2 2 16 2 2 17
                  2 3 19 2 3 15 2 3 25 2 3 20
     RUN;
     PROC PRINT DATA=NEW COOKIES;
     RUN;
(3)
     PROC SGPLOT DATA=NEW COOKIES;
(4)
           VLINE PRICE /
                  GROUP=LOCATION
                  STAT=MEAN
                  RESPONSE=SALES
                  MARKERS;
     RUN;
(5)
     PROC GLM DATA=NEW COOKIES ORDER=INTERNAL;
(6)
            CLASS PRICE LOCATION;
(7)
            MODEL SALES=PRICE*LOCATION;
           MEANS PRICE*LOCATION / HOVTEST=LEVENE(TYPE=ABS);
(8)
            TITLE "Levene's Test of Homogeneity of Variances";
     RUN;
(9)
     PROC GLM DATA=NEW COOKIES ORDER=INTERNAL;
           CLASS PRICE LOCATION;
(10)
(11)
           MODEL SALES=PRICE LOCATION PRICE*LOCATION;
(12)
           MEANS PRICE LOCATION PRICE*LOCATION;
(13)
           LSMEANS LOCATION / PDIFF=ALL ADJUST=TUKEY;
            TITLE "Two-Way ANOVA: Cookie Sales";
     RUN;
     TITLE;
     QUIT;
```

- (1) *Please take note of the order used for data entry.* PRICE is the variable initiated first, then LOCATION, then SALES. Correspondingly, the raw data are entered with PRICE first, LOCATION second, and SALES third. Therefore, the observations are entered in the following order.
 - PRICE = 1 and LOCATION = 1 PRICE = 1 and LOCATION = 2 PRICE = 1 and LOCATION = 3 PRICE = 2 and LOCATION = 1 PRICE = 2 and LOCATION = 2 PRICE = 2 and LOCATION = 3
- (2) The FORMAT statement is used to apply the labels created in PRICE_FMT and LOC_FMT to PRICE and LOCATION, respectively. Note that a period (.) follows PRICE_FMT and LOC_FMT; the code will not work properly if you omit the periods.
- (3) PROC SGPLOT creates a line graph comparing the means by PRICE and LOCATION.
- (4) The VLINE statement specifies PRICE as the variable to be placed on the *x*-axis. A forward slash (/) is used prior to entering the VLINE options. The GROUP option specifies LOCATION as the variable to use for the lines; each LOCATION will be shown as a separate color-coded line. The STAT option requests the mean for each group to be the statistic that is graphed. The RESPONSE option identifies the *y*-axis variable, SALES in this case. MARKERS tells SAS to show the means for each group as data points.
- (5) This PROC GLM step is used for Levene's Test of the homogeneity of variances only. Do NOT use or report any of the other results from this step. A quirk of SAS is that Levene's Test is only available for one-way ANOVAs. Therefore, this PROC GLM step is written such that the interaction term (PRICE*LOCATION) is the only independent variable (IV) in the analysis, making it a one-way ANOVA while retaining all six cells whose variances need to be compared. Once again, do NOT use or report any results other than Levene's Test from this step. Although some of the ANOVA results will match the final (correct) results, some of them (including the Sum of Squares partitioning) will NOT. ORDER=INTERNAL tells SAS to analyze the data in the order that it was entered in the DATA step.
- (6) The CLASS statement identifies PRICE and LOCATION as the grouping variables.
- (7) The MODEL statement is written as Dependent Variable (DV) = the interaction term (PRICE*LOCATION) for the two Independent Variables (IVs). Remember, this is NOT the correct model for a factorial ANOVA. This MODEL statement is required in order to run Levene's Test.
- (8) The MEANS statement requires SAS to compute the means for each cell of PRICE by LOCATION. The option HOVTEST=LEVENE calls for Levene's Test of Homogeneity of Variances, to test the assumption that the cells have equal variances.
- (9) This PROC GLM step is the correct step for a Factorial ANOVA. These are the true results to use and report for this analysis. ORDER=INTERNAL tells SAS to analyze the data in the order that it was entered in the DATA step.
- (10) The CLASS statement identifies PRICE and LOCATION as the grouping variables.
- (11) This MODEL statement which is the correct model for a factorial ANOVA is written as Dependent Variable (DV) = Independent Variable 1 (IV1) and Independent Variable 2 (IV2) and the interaction term for the two IVs (IV1*IV2).

- (12) The MEANS statement requires SAS to compute the means for (A) each group in PRICE,(B) each group in LOCATION, and (C) each cell of PRICE by LOCATION.
- (13) The LSMEANS statement shown here is only required if (A) there is a significant interaction effect <u>or</u> (B) there is a significant main effect. Remember, if there is a significant interaction effect, then this effect takes priority and you need to conduct posthoc analyses to find out which interaction (IV1*IV2) means differ significantly. If the interaction is nonsignificant, you need to examine the main effects for significance; if a main effect (or multiple main effects) are significant, conduct post-hoc analyses to find out which main effects. In this example, the LSMEANS statement performs Tukey's HSD by LOCATION. The PDIFF=ALL option requests the p values for each of the pairwise comparisons.

Inferential Statistics Two-Way ANOVA with Nonsignificant Interaction Selected Output

Obs	PRICE	LOCATION	SALES
1	1. Regular	1. Entrance	38
2	1. Regular	1. Entrance	31
3	1. Regular	1. Entrance	27
4	1. Regular	1. Entrance	33
5	1. Regular	2. Cookie Aisle	28
6	1. Regular	2. Cookie Aisle	25
7	1. Regular	2. Cookie Aisle	23
8	1. Regular	2. Cookie Aisle	20
9	1. Regular	3. Checkout	21
10	1. Regular	3. Checkout	32
11	1. Regular	3. Checkout	30
12	1. Regular	3. Checkout	22
13	2. Discounted	1. Entrance	35
14	2. Discounted	1. Entrance	21
15	2. Discounted	1. Entrance	39
16	2. Discounted	1. Entrance	30
17	2. Discounted	2. Cookie Aisle	22
18	2. Discounted	2. Cookie Aisle	24
19	2. Discounted	2. Cookie Aisle	16
20	2. Discounted	2. Cookie Aisle	17
21	2. Discounted	3. Checkout	19
22	2. Discounted	3. Checkout	15
23	2. Discounted	3. Checkout	25

The assumption of homogeneity of variances was found to be tenable, F(5, 18) = 1.12, p = .385.

Levene's Test of Homogeneity of Variances

The GLM Procedure

Levene's Test for Homogeneity of SALES Variance ANOVA of Absolute Deviations from Group Means										
Source DF		Sum of Squares	Mean Square	F Value	Pr > F					
PRICE*LOCATION	5	32.2083	6.4417	1.12	0.3848					
Error	18	103.5	5.7500							

1	Notes:		Two	-W	lay ANOV	A: Coo	kie Sale	S			
	10005.				The GLM	Procedu	re				
	Use Type III Sums of Squares (Type			Dej	pendent Va	ariable:	SALES				
	III SS).	Source	DF	Su	um of Squa	res Me	an Square	F Value	Pr > F	:	
		Model	5		590.2083	333	18.041667	4.56	0.0073	3	
	The DF associated with the IVs	Error	18		465.750	000	25.875000				
	(PRICE, LOCATION, and	Corrected Total	23		1055.9583	333					
	PRICE*LOCATION, in the bottom	R-So	uare	C	Coeff Var	Root MS	SALES	Mean			
	table) add up to the "Model" DF in	0.5	58931		19.91549	5.08674	25.	54167			
	the ANOVA table at the top.			_							The interaction between
1		Source	1	DF	Type I S	SS Mea	n Square	F Value	Pr > F		PRICE and LOCATION was
		PRICE		1	92.04166	67 92	.0416667	3.56	0.0755		not found to be significant.
		LOCATION		2	467.583333	33 233	.7916667	9.04	0.0019		$F(2 18) = 0.59 \ n = .564$
		PRICE*LOCATIO	NC	2	30.583333	33 1	.2916667	0.59	0.5642		The main effect of PRICE or $\frac{1}{2}$
		Source	1	DF	Type III S	S Mea	n Square	F Value	Pr > F		cookie sales was not
		PRICE		1	92.04166	67 92	.0416667	3.56	0.0755		significant either, $F(1, 18) =$
		LOCATION		2	467.583333	33 233	7916667	9.04	0.0019		3.56, p = .076. There was a
		PRICE*LOCATIO	ОМ	2	30.583333	33 1	.2916667	0.59	0.5642		significant main effect of
											LOCATION, $F(2, 18) = 9.04$
											p = .002.

Level of	Level of		SALES				
PRICE	LOCATION		Mean	Std Dev			
1. Regular	1. Entrance	4	32.2500000	4.57347424			
1. Regular	2. Cookie Aisle	4	24.000000	3.36650165			
1. Regular	3. Checkout	4	26.2500000	5.56027577			
2. Discounted	1. Entrance	4	31.2500000	7.76208735			
2. Discounted	2. Cookie Aisle	4	19.7500000	3.86221008			
2. Discounted	3. Checkout	4	19.7500000	4.11298756			

Inferential Statistics Two-Way ANOVA with Significant Interaction Research Scenario

Eighteen students were randomly assigned to one of three different classroom teaching methods (online, hybrid, or in person) to learn a new math concept. At the end of 12 weeks, students were given a test to assess their understanding of the concept. A two-way ANOVA will be run to assess the difference between the teaching methods as well as between student's previous online experiences. The table below shows the scores by teaching method and previous experience. Two students did not finish the 12-week course so the distribution between the teaching methods and the previous experience was not equal.

	1. In person	2. Hybrid	3. Online
1 Experienced (Hestelson on	57.5	72.5	77.5
and a course in the past)	80.0	75.0	90.0
offine course in the past)	62.5		82.5
2 Not Experienced (Hes not	80.0	85.0	57.5
2. Not Experienced (Has not	65.0	100.0	65.0
taken an omme class in the past)	65.0	87.5	

Inferential Statistics Two-Way ANOVA with Significant Interaction SAS Code

```
PROC FORMAT;
            VALUE EXPER FMT
                  1="1. Experienced"
                  2="2. Not Experienced";
            VALUE METHOD FMT
                  1="1. In Person"
                  2="2. Hybrid"
                  3="3. Online";
     RUN;
     DATA TEACHING METHODS;
(1)
            INPUT EXPERIENCE METHOD SCORE @@;
            FORMAT EXPERIENCE EXPER FMT. METHOD METHOD FMT.;
(2)
            LINES;
                  1 1 57.5 1 1 80.0 1 1 62.5
                  1 2 72.5 1 2 75.0
                  1 3 77.5 1 3 90.0 1 3 82.5
                  2 1 80.0 2 1 65.0 2 1 65.0
                  2 2 85.0 2 2 100.0 2 2 87.5
                  2 3 57.5 2 3 65.0
     RUN;
     PROC PRINT DATA=TEACHING METHODS;
     RUN;
(3)
     PROC SGPLOT DATA=TEACHING METHODS;
(4)
           VLINE METHOD /
                  GROUP=EXPERIENCE
                  STAT=MEAN
                  RESPONSE=SCORE
                  MARKERS;
     RUN;
(5)
     PROC GLM DATA=TEACHING METHODS ORDER=INTERNAL;
(6)
            CLASS EXPERIENCE METHOD;
(7)
            MODEL SCORE=EXPERIENCE*METHOD;
(8)
           MEANS EXPERIENCE*METHOD / HOVTEST=LEVENE (TYPE=ABS);
            TITLE "Levene's Test of Homogeneity of Variances";
     RUN;
(9)
     PROC GLM DATA=TEACHING METHODS ORDER=INTERNAL;
(10)
           CLASS EXPERIENCE METHOD;
(11)
           MODEL SCORE=EXPERIENCE METHOD EXPERIENCE*METHOD;
(12)
           MEANS EXPERIENCE METHOD EXPERIENCE*METHOD;
(13)
           LSMEANS EXPERIENCE*METHOD / PDIFF=ALL ADJUST=TUKEY;
            TITLE "Two-Way ANOVA: Math Teaching Methods";
     RUN;
     TITLE;
     QUIT;
```

(1) *Please take note of the order used for data entry.* EXPERIENCE is the variable initiated first, then METHOD, then SCORE. Correspondingly, the raw data are entered with EXPERIENCE first, METHOD second, and SCORE third. Therefore, the observations are entered in the following order.

EXPERIENCE = 1 and METHOD = 1 EXPERIENCE = 1 and METHOD = 2 EXPERIENCE = 1 and METHOD = 3 EXPERIENCE = 2 and METHOD = 1 EXPERIENCE = 2 and METHOD = 2 EXPERIENCE = 2 and METHOD = 3

- (2) The FORMAT statement is used to apply the labels created in EXPER_FMT and METHOD _FMT to EXPERIENCE and METHOD, respectively. *Note that a period (.) follows EXPER_FMT <u>and METHOD_FMT</u>; the code will not work properly if you omit the periods.*
- (3) PROC SGPLOT creates a line graph comparing the means by EXPERIENCE and METHOD.
- (4) The VLINE statement specifies EXPERIENCE as the variable to be placed on the *x*-axis. A forward slash (/) is used prior to entering the VLINE options. The GROUP option specifies METHOD as the variable to use for the lines; each METHOD will be shown as a separate color-coded line. The STAT option requests the mean for each group to be the statistic that is graphed. The RESPONSE option identifies the *y*-axis variable, SALES in this case. MARKERS tells SAS to show the means for each group as data points.
- (5) This PROC GLM step is used for Levene's Test of the homogeneity of variances only. Do NOT use or report any of the other results from this step. A quirk of SAS is that Levene's Test is only available for one-way ANOVAs. Therefore, this PROC GLM step is written such that the interaction term (EXPERIENCE*METHOD) is the only independent variable (IV) in the analysis, making it a one-way ANOVA while retaining all six cells whose variances need to be compared. Once again, do NOT use or report any results – other than Levene's Test – from this step. Although some of the ANOVA results will match the final (correct) results, some of them (including the Sum of Squares partitioning) will NOT. ORDER=INTERNAL tells SAS to analyze the data in the order that it was entered in the DATA step.
- (6) The CLASS statement identifies EXPERIENCE and METHOD as the grouping variables.
- (7) The MODEL statement is written as Dependent Variable (DV) = the interaction term (EXPERIENCE*METHOD) for the two Independent Variables (IVs). Remember, this is NOT the correct model for a factorial ANOVA. This MODEL statement is required in order to run Levene's Test.
- (8) The MEANS statement requires SAS to compute the means for each cell of EXPERIENCE by METHOD. The option HOVTEST=LEVENE calls for the Levene's Test of Homogeneity of Variances, to test the assumption that the cells have equal variances.
- (9) This PROC GLM step is the correct step for a Factorial ANOVA. These are the correct results to use and report for this analysis. ORDER=INTERNAL tells SAS to analyze the data in the order that it was entered in the DATA step.
- (10) The CLASS statement identifies EXPERIENCE and METHOD as the grouping variables.

- (11) This MODEL statement which is the correct model for a factorial ANOVA is written as Dependent Variable (DV) = Independent Variable 1 (IV1) and Independent Variable 2 (IV2) and the interaction term for the two IVs (IV1*IV2).
- (12) The MEANS statement requires SAS to compute the means for (A) each group in EXPERIENCE, (B) each group in METHOD, and (C) each cell of EXPERIENCE by METHOD.
- (13) The LSMEANS statement shown here is only required if (A) there is a significant interaction effect <u>or</u> (B) there is a significant main effect. Remember, if there is a significant interaction effect, then this effect takes priority and you need to conduct posthoc analyses to find out which interaction (IV1*IV2) means differ significantly. If the interaction is nonsignificant, you need to examine the main effects for significance; if a main effect (or multiple main effects) are significant, conduct post-hoc analyses to find out which main effect (IV1 and/or IV2) means differ significantly. The LSMEANS statement will perform Tukey's HSD post-hoc testing for any effect you specify: interaction or main effects. In this example, the LSMEANS statement performs Tukey's HSD by METHOD. The PDIFF=ALL option requests the p values for each of the pairwise comparisons.

Inferential Statistics Two-Way ANOVA with Significant Interaction Selected Output

Obs	EXPERIENCE	METHOD	SCORE
1	1. Experienced	1. In Person	57.5
2	1. Experienced	1. In Person	80.0
3	1. Experienced	1. In Person	62.5
4	1. Experienced	2. Hybrid	72.5
5	1. Experienced	2. Hybrid	75.0
6	1. Experienced	3. Online	77.5
7	1. Experienced	3. Online	90.0
8	1. Experienced	3. Online	82.5
9	2. Not Experienced	1. In Person	80.0
10	2. Not Experienced	1. In Person	65.0
11	2. Not Experienced	1. In Person	65.0
12	2. Not Experienced	2. Hybrid	85.0
13	2. Not Experienced	2. Hybrid	100.0
14	2. Not Experienced	2. Hybrid	87.5
15	2. Not Experienced	3. Online	57.5
16	2. Not Experienced	3. Online	65.0

The assumption of homogeneity of variances was
found to be tenable, $F(3, 8) = 0.84$, $p = .507$.

Levene's Test of Homogeneity of Variances

The GLM Procedure

Levene's Test for Homogeneity of SCORE Variance ANOVA of Absolute Deviations from Group Means										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
EXPERIENCE*METHOD	3	30.3241	10.1080	0.84	0.5074					
Error	8	95.8333	11.9792							
Level of	Level of		SCORE							
--------------------	--------------	---	------------	------------	--					
EXPERIENCE	METHOD	Ν	Mean	Std Dev						
1. Experienced	1. In Person	3	66.6666667	11.8145391						
1. Experienced	2. Hybrid	2	73.7500000	1.7677670						
1. Experienced	3. Online	3	83.3333333	6.2915287						
2. Not Experienced	1. In Person	3	70.000000	8.6602540						
2. Not Experienced	2. Hybrid	3	90.8333333	8.0363756						
2. Not Experienced	3. Online	2	61.2500000	5.3033009						

Notes:

Use Type III Sums of Squares (Type III SS).

The *DF* associated with the IVs (EXPERIENCE, METHOD, and EXPERIENCE*METHOD, in the bottom table) add up to the "Model" *DF* in the ANOVA table at the top.

Two-Way ANOVA:	Math	Teaching	Methods
----------------	------	----------	---------

The GLM Procedure

Dependent Variable: SCORE

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	1624.609375	324.921875	4.86	0.0163
Error	10	668.750000	66.875000		
Corrected Total	15	2293.359375			

	R-Square	Coeff Var		Root I	MSE SCORE M		ean		
	0.708397	10	88095	8.177	7714 75.15		625		
Source		DF	Тур	e I SS	Mea	n Square	F Va	alue	Pr > F
EXPERIENC	E	1	3.51	156250		3.5156250		0.05	0.8233
METHOD		2	669.26	68269	33	4.6334135		5.00	0.0312
EXPERIENC	E*METHOD	2	951.82	269231	475.9134615			7.12	0.0120
Source		DF	Туре	III SS	Mea	an Square	F Va	alue	Pr > F
EXPERIENC	E	1	1.19	04762		1.1904762		0.02	0.8965
METHOD		2	536.31	41026	26	8.1570513		4.01	0.0526
EXPERIENC	E*METHOD	2	951.82	269231	47	5.9134615		7.12	0.0120

The interaction between EXPERIENCE and METHOD was found to be significant, F(2, 10) = 7.12, p = .012.

Remember: When there is a significant interaction, this takes precedence over main effects, regardless of whether or not they are significant.

Level of EXPERIENCE		SCORE			
	Ν	Mean	Std Dev		
1. Experienced	8	74.6875000	10.5591446		
2. Not Experienced	8	75.6250000	14.6841752		

Level of		SCORE					
METHOD	Ν	Mean	Std Dev				
1. In Person	6	68.3333333	9.4428103				
2. Hybrid	5	84.000000	10.9829413				
3. Online	5	74.5000000	13.1576974				

Level of	Level of		SCORE		
EXPERIENCE	METHOD	Ν	Mean	Std Dev	
1. Experienced	1. In Person	3	66.6666667	11.8145391	
1. Experienced	2. Hybrid	2	73.7500000	1.7677670	
1. Experienced	3. Online	3	83.3333333	6.2915287	
2. Not Experienced	1. In Person	3	70.000000	8.6602540	
2. Not Experienced	2. Hybrid	3	90.8333333	8.0363756	
2. Not Experienced	3. Online	2	61.2500000	5.3033009	

Inferential Statistics Analysis of Covariance (ANCOVA) Research Scenario

A personnel manager wished to evaluate the effect of positive and negative reinforcement on tardiness in a large manufacturing plant. A group of 30 chronic late arrivers were identified based on their previous tardiness records. They were then randomly assigned in equal numbers to one of three study groups: (1) positive reinforcement when on time, (2) negative reinforcement when late, and (3) no reinforcement. After a 10-week treatment period, data was collected on the number of tardies over an additional 10-week period. The data below presents the number of tardies for 10 weeks prior to the intervention and 10 weeks following termination of the treatment.

Type of Reinforcement									
1. Positive R	einforcement	2. Negative R	einforcement	3. No Reinforcement					
Pre	Post	Pre	Post	Pre	Post				
4	2	4	3	5	5				
5	3	5	5	5	4				
6	1	5	3	5	4				
7	4	6	6	6	8				
7	3	7	6	8	8				
8	5	8	7	8	9				
9	3	8	6	9	7				
9	5	9	8	10	10				
10	6	10	6	10	8				
11	5	11	4	7	10				

Inferential Statistics Analysis of Covariance (ANCOVA) SAS Code

	PROC	FORMAT	;					
		VALUE	REINF	FMT				
			1 ="1.	- Positi	ive"			
			2=" 2.	Negati	ive"			
			3= "3.	None";	;			
	RUN;							
	DATA	TARDIN	ESS_REI	INF;				
		INPUT EODMAI	REINE DETNI	PRE PO	JST @@, Z EMT	;		
		LINES	. KEINI	CEINI		,		
			, 1	4	2	1	5	3
			1	6	1	1	7	4
			1	7	3	1	8	5
			1	9	3	1	9	5
			1	10	6	1	11	5
			2	4	3	2	5	5
			2	5	3	2	6	6
			2	7	6	2	8	7
			2	8	6	2	9	8
			2	10	6	2	11	4
			3	5	5	3	5	4
			3	5	4	3	6	8
			3	8	8	3	8	9
			3	9	/	3	10	10
	RUN;		5	10	0	5	'	10
	PROC RUN;	PRINT	ΟΑΤΑ=ΤΑ	ARDINES	SS_REII	NF;		
(1)	PROC	GLM DAT	TA=TARI	DINESS	REINF	PLOTS:	=DIAGN(OSTICS:
()		CLASS	REINF;	;	_		-	
		MODEL	POST=H	REINF;				
		MEANS	REINF	/ HOV	rest=l	EVENE (FYPE=Al	BS);
		TITLE	"Lever	ne's Te	est of	Homoge	eneity	of Variances";
	RUN;							
(2)	DDOC		ז כז ב ת – ב ת		DETNE	_		
(∠)	PROC	CLASS	REINE.			,		
		MODEL.	POST=F	, SEINE 1	PRE RE	INF*PRI	. .	
		TTTLE	"Test	of Ass	sumptio	on of F	-, Homogei	neity of Slopes":
	RUN;		1000	01 110	5 amp 0 1 .			
	·							
(3)	PROC	GLM DAT	<mark>la</mark> =tari	DINESS	REINF	;		
		CLASS	REINF;	;				
		MODEL	POST=F	REINF H	PRE;			
		TITLE	"ANCOV	VA: Emp	ployee	Tardi	ness";	
	RIIN							

RUN;

R 3.4.1: A Survival Guide

```
(4) PROC GLM DATA=TARDINESS_REINF;
	CLASS REINF;
	MODEL POST=REINF PRE;
	LSMEANS REINF / PDIFF ADJUST=TUKEY;
	TITLE "Adjusted Means & Tukey Post-Hoc Comparisons";
	RUN;
(5) PROC GLM DATA=TARDINESS_REINF;
	CLASS REINF;
	MODEL PRE=REINF;
	TITLE "Bryant-Paulson (BP) F Value";
	RUN;
	TITLE;
	QUIT;
```

- (1) This PROC GLM step is used for Levene's Test of the homogeneity of variances. Do NOT use or report any of the other significance test results from this step. It will perform Levene's Test by conducting a one-way ANOVA of POST on REINF. It will also produce graphics to help determine whether the assumption of normality is tenable. Additionally, the *unadjusted* means and standard deviations will be produced by this procedure.
- (2) This PROC GLM step is used to test the homogeneity of slopes assumption. Do not use any other results from this procedure. An ANCOVA test is produced by this PROC GLM by including an interaction term (REINF*PRE) in the model.
- (3) This PROC GLM step is the correct step for ANCOVA. These are the correct results to use and report for this analysis. This PROC GLM is the same as that in (2), except that the interaction term is excluded. The output from this PROC GLM should be reported as the ANCOVA results.
- (4) This PROC GLM step is used to generate the *adjusted* pretest/pre-treatment means and Tukey's post-hoc comparisons. The LSMEANS ("least squares" or "estimated marginal" means) statement requests the adjusted means, as well as the post-hoc comparisons with a Tukey alpha level adjustment for multiple significance tests.
- (5) This PROC GLM step is used to calculate the *F* value for the Bryant-Paulson (BP) Post-Hoc Procedure. Do not use any other results from this procedure. If you want to conduct the BP Procedure, you can use PROC GLM to run a one-way ANOVA modeling PRE as the dependent variable and REINF as the independent variable. This will provide the *F* value that you will need for the manual BP calculations.

Inferential Statistics Analysis of Covariance (ANCOVA) Selected Output

The assumption of homogeneity of variances was found to be tenable, F(2, 27) = 1.04, p = .368.

Levene's Test of Homogeneity of Variances

The GLM Procedure

Levene's Test for Homogeneity of POST Variance ANOVA of Absolute Deviations from Group Means										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
REINF	2	1.8747	0.9373	1.04	0.3684					
Error	27	24.4200	0.9044							

Test of Assumption of Homogeneity of Slopes

The GLM Procedure

Dependent Variable: POST

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	106.2716858	21.2543372	9.96	<.0001
Error	24	51.1949808	2.1331242		
Corrected Total	29	157.4666667			

R-Square	Coeff Var	Root MSE	POST Mean	
0.674884	26.71686	1.460522	5.466667	

Source	DF	Type I SS	Mean Square	F Value	Pr > F	
REINF	2	64.86666667	32.43333333	15.20	<.0001	
PRE	1	36.70054432	36.70054432	17.21	0.0004	
PRE*REINF	2	4.70447484	2.35223742	1.10	0.3482	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
REINF	2	4.36894310	2.18447155	1.02	0.3743	
PRE	1	39.30169928	39.30169928	18.42	0.0003	

2.35223742

2 4.70447484

PRE*REINF

The assumption of homogeneity of regression slopes was found tenable, as the PRE×REINF interaction was nonsignificant, (F = 1.10, p = .348).

1.10 0.3482

			B	irya [n t-Pau The Gi Depende	ISON LM P nt Va	n (BP) F \ rocedure nriable: PR	/alue		
	Source		DF	S	um of So	quare	s Mean S	Square	F Valu	e Pr > F
	Model		2		0.60	00000	0 0.3	000000	0.0	6 0.939
	Error		27		128.60	00000	4.7	629630		
	Corrected	Total	29		129.20	00000	0			
		R-	Squa	are	Coeff V	ar F	Root MSE	PRE Me	ean	
F value needed for		0	004	644	29.492	18	2.182421	7.400	000	
the manual	So	urce	DF	Ty	pe I SS	Mea	in Square	F Valu	e Pr	F
Bryant-Paulson	RE	INF	2	0.6	0000000	-0	30000000	0.0	0.93	91
post-hoc procedure	So	urce	DF	Тур	e III SS	Mea	an Square	F Valu	e Pr	F
	RE	INF	2	0.6	0000000	0	.30000000	0.0	06 0.93	91

Inferential Statistics Repeated Measures: One Within Factor Design Research Scenario

A high school math teacher studies the impact of paper color on mathematics test scores. The hypothesis was test scores would be higher on tests taken on pastel green paper than tests taken on bright yellow paper or traditional white paper because the cool color would have a calming effect and reduce test-taking anxiety. Weekly math tests for an Algebra I class were printed in equal quantities on the three colors of paper. The order of treatment was counterbalanced such that one third of the students were randomly assigned to a different color each week over a three-week period. Below are the test scores by student by paper color.

Student	Paper Color						
Student	Yellow (Y)	Green (G)	White (W)				
1	80	76	77				
2	81	89	70				
3	39	64	55				
4	95	93	91				
5	71	90	87				
6	86	76	92				
7	98	94	83				
8	95	92	92				
9	73	77	53				
10	78	88	83				
11	54	64	57				
12	73	92	96				
13	82	75	69				
14	49	67	55				
15	83	91	79				
16	91	90	88				
17	94	97	91				
18	85	89	90				
19	62	69	45				

(1) (2) (3)

(4) (5) (6) (7)

(8)

SAS Code						
DATA	PAPER C	COLO	R;			
	INPUT LINES;	ID	YELLOW	GREEN	WHITE;	
		1	80	76	77	
		2	81	89	70	
		3	39	64	55	
		4	95	93	91	
		5	71	90	87	
		6	86	76	92	
		7	98	94	83	
		8	95	92	92	
		9	73	77	53	
		10	78	88	83	
		11	54	64	57	
		12	73	92	96	
		13	82	75	69	
		14	49	67	55	
		15	83	91	79	
		16	91	90	88	
		17	94	97	91	
		18	85	89	90	
		19	62	69	45	
RUN;						
PROC	PRINT [ATA	=PAPER	COLOR	;	
RUN;			-	_		
PROC	MEANS [DATA	=PAPER_	COLOR	;	
RUN;						
PROC	GLM DAT	A=P	APER_C	DLOR <mark>O</mark>	RDER=INTERNAL;	
	MODEL	YEL	LOW GRI	EEN WHI	ITE= / NOUNI;	
	REPEAI	ED	COLOR ,	PRIN	ГЕ;	
	TITLE	"Re	peated	Measu	res ANOVA: Paper Color";	
RUN;						
ጥፐጥፐ.ፑ	R -					
	-,					
PROC	FORMAT;					
	VALUE	COL	OR_FMT			
		1="	Yellow'	•		
		2="	Green"			
		3="	White"	;		
RUN;						
DATA	PAPER C	COLO	R 2;			
	SET PA	APER	COLOR	;		
	SCORE=	=YEL	LOW; CO	DLOR=1	; OUTPUT;	
	00000	 				

Inferential Statistics

86

SCORE=WHITE; COLOR=3; OUTPUT;

```
(9)
            FORMAT COLOR COLOR FMT.;
            DROP YELLOW GREEN WHITE;
(10)
      RUN;
      PROC PRINT DATA=PAPER COLOR 2;
(11)
      RUN;
(12)
     PROC SGPANEL DATA=PAPER COLOR 2;
           PANELBY COLOR / UNISCALE=ROW;
(13)
(14)
            HISTOGRAM SCORE;
(15)
           DENSITY SCORE;
     RUN;
(16)
      PROC GLM DATA=PAPER COLOR 2 ORDER=INTERNAL PLOTS=DIAGNOSTICS;
            CLASS ID COLOR;
(17)
            MODEL SCORE=ID COLOR;
(18)
            LSMEANS COLOR / PDIFF CL ADJUST=BON;
            TITLE "Bonferroni Post-Hoc Comparisons";
      RUN;
      TITLE;
      QUIT;
```

- (1) This PROC GLM step is the correct step for repeated measures ANOVA. These are the correct results to use and report for this analysis. The output from this PROC GLM should be reported as the repeated measures ANOVA results.
- (2) As always, the MODEL statement is written as DV(s) = IV(s). Repeated measures ANOVA can be approached from a univariate (single DV) perspective or a multivariate (multiple DV) perspective. It is for this reason that you will see the repeated measures variable(s) placed in the MODEL statement to the left of the equal sign (=) where the DVs belong. In this case, the colors (YELLOW, GREEN, and WHITE) are the within (repeated) factors, so they are treated as the DVs. There are no between (grouping) factors, so there are no IVs; there is nothing to the right of the equal sign. The NOUNI option suppresses some univariate output that you will not need.
- (3) The REPEATED statement is what makes this a repeated measures analysis. For the purpose of making the output more informative, you can follow the statement REPEATED with a word to describe/name the repeated measure being analyzed; in this case, it was named COLOR. (TIME, TREATMENT, and TRIAL may be good options in other circumstances.) It is important for you to understand that this word is not a variable; it is just a label that SAS will use in the output. The PRINTE option produces supplemental output, including Mauchly's Test of Sphericity.
- (4) Unfortunately, if you need Bonferroni post-hoc testing of the *within factor(s)*, you cannot get it with the previous PROC GLM code. In order to get Bonferroni results, you will first need to "reshape" your data; you will need to go from the "wide" format you began with to a "long" format. In this DATA step, a long data format is created and named PAPER_COLOR_2.
- (5) The SET statement copies the data from PAPER_COLOR into PAPER_COLOR_2.
- (6) Two new variables are created for the PAPER_COLOR_2 dataset: SCORE and COLOR. SAS copies each YELLOW value to SCORE and simultaneously codes that observation as a "1" for COLOR.

- (7) SAS copies each GREEN value to SCORE and simultaneously codes that observation as a "2" for COLOR.
- (8) SAS copies each WHITE value to SCORE and simultaneously codes that observation as a "3" for COLOR.
- (9) The FORMAT statement is used to apply the labels created in COLOR_FMT to COLOR. *Note that a period (.) follows COLOR_FMT; the code will not work properly if you omit the period.*
- (10) The DROP statement deletes the variables YELLOW, GREEN, and WHITE from PAPER_COLOR_2 because they are no longer needed (because COLOR was created and coded as 1, 2, or 3). Note: These variables still exist in the original dataset PAPER_COLOR.
- (11) Again, it is always a good idea to display your new dataset and confirm there are no data entry errors.
- (12) PROC SGPANEL creates a panel of graphs. This will be used to assess whether SCORE is normally distributed for each COLOR.
- (13) The PANELBY statement requests that each panel represent one level of COLOR. The UNISCALE=ROW option requests that all panels have the same *x*-axis scale.
- (14) The HISTOGRAM statement will produce histograms of SCORE. These histograms will be produced by COLOR per the statement in (13).
- (15) The DENSITY statement will overlay a normal curve on each histogram.
- (16) This PROC GLM step is used generate the Bonferroni post-hoc comparisons. Do NOT use or report any of the other results from this step. Some of the results from this PROC GLM will match the repeated measures ANOVA results, but some of the results are different. Only the Bonferroni post-hoc comparisons should be reported.
- (17) The MODEL statement includes the ID variable as an IV. Note that the new variable SCORE is the DV and the new grouping variable COLOR is an IV.
- (18) The LSMEANS ("least squares" or "estimated marginal" means) statement requests the adjusted means, as well as the Bonferroni post-hoc comparisons. The CL option requests confidence limits (confidence intervals) for the results.

Obs	ID	YELLOW	GREEN	WHITE
1	1	80	76	77
2	2	81	89	70
3	3	39	64	55
4	4	95	93	91
5	5	71	90	87
6	6	86	76	92
7	7	98	94	83
8	8	95	92	92
9	9	73	77	53
10	10	78	88	83
11	11	54	64	57
12	12	73	92	96
13	13	82	75	69
14	14	49	67	55
15	15	83	91	79
16	16	91	90	88
17	17	94	97	91
18	18	85	89	90
19	19	62	69	45

Inferential Statistics Repeated Measures: One Within Factor Design Selected Output

The MEANS Procedure

Variable	Ν	Mean	Std Dev	Minimum	Maximum
ID	19	10.0000000	5.6273143	1.0000000	19.0000000
YELLOW	19	77.3157895	16.4217086	39.0000000	98.0000000
GREEN	19	82.7894737	11.0784021	64.000000	97.0000000
WHITE	19	76.4736842	16.2356549	45.0000000	96.0000000

The assumption of sphericity was found to be tenable, Mauchly's criterion (df = 2) = 0.937, $\chi^2 = 1.110$, p = .574. [Note: The "Orthogonal Components" results are reported.]

		Sphericity Tests		
Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq
Transformed Variates	2	0.6269285	7.9376864	0.0189
Orthogonal Components	2	0.9367721	1.1103591	0.5740

This output is from the multivariate perspective, and you may disregard it.

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no COLOR Effect
H = Type III SSCP Matrix for COLOR
E = Error SSCP Matrix

C-41	0-11	M-7 5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.62033770	5.20	2	17	0.0173
Pillai's Trace	0.37966230	5.20	2	17	0.0173
Hotelling-Lawley Trace	0.61202519	5.20	2	17	0.0173
Roy's Greatest Root	0.61202519	5.20	2	17	0.0173

Repeated Measures ANOVA Results (Within Subjects Effects)

There was a significant effect of paper color on math test scores, F(2, 36) = 4.14, p = .024.

Repeated Measures ANOVA: Paper Color

If the assumption of sphericity is NOT tenable, the Greenhouse-Geisser (G-G) or Huynh-Feldt (H-F) the adjusted p value, along with the corresponding epsilon value, should be reported.

Obs	ID	SCORE	COLOR
1	1	80	Yellow
2	1	76	Green
3	1	77	White
4	2	81	Yellow
5	2	89	Green
6	2	70	White
7	3	39	Yellow
8	3	64	Green
9	3	55	White
10	4	95	Yellow
11	4	93	Green
12	4	91	White
13	5	71	Yellow
14	5	90	Green
15	5	87	White
16	6	86	Yellow
17	6	76	Green
18	6	92	White
19	7	98	Yellow
20	7	94	Green
21	7	83	White
22	0	95	Yellow

Bonferroni Post-Hoc Comparisons

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni

COLOR	SCORE LSMEAN	LSMEAN Number
Yellow	77.3157895	1
Green	82.7894737	2
White	76.4736842	3

Least Squares Means for effect COLOR Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: SCORE							
i/j	1	2	3				
1		0.0827	1.0000				
2	0.0827		0.0356				
3	1.0000	0.0356					

Bonferroni's post-hoc test revealed a significant difference between test scores on green and white paper (p = .036).

COLOR	SCORE LSMEAN	95% Confidence Limit		
Yellow	77.315789	73.898076	80.733503	
Green	82.789474	79.371760	86.207187	
White	76.473684	73.055971	79.891398	

	Least Squares Means for Effect COLOR										
i	j	Difference Between Means	Simultaneous 95% Confidence Limi for LSMean(i)-LSMean(j)								
1	2	-5.473684	-11.458024	0.510656							
1	3	0.842105	-5.142235	6.826445							
2	3	6.315789	0.331450	12.300129							

Inferential Statistics Repeated Measures: One Within Factor and One Between Factor Design Research Scenario

A researcher wanted to investigate the effect of anxiety on math performance for fourth graders in a variety of testing time constraints. She came up with a 20-question multiplication test and gave it to twelve participants. For the first trial, she allowed participants one hour. For the second trial, participants had 45 minutes to take the test. The time for the third trial was 30 minutes. The time for the final trial was 15 minutes. Prior to giving the math test, she assessed students' test anxiety level; students with low test anxiety were in Group 1 and those with high test anxiety were in Group 2. The tests, however, were the same between groups. The data can be seen below.

Subject	Anxiety	Trial 1	Trial 2	Trial 3	Trial 4
1	1	18	14	12	6
2	1	19	12	8	4
3	1	14	10	6	2
4	1	16	12	10	4
5	1	12	8	6	2
6	1	18	10	5	1
7	2	16	10	8	4
8	2	18	8	4	1
9	2	16	12	6	2
10	2	19	16	10	8
11	2	16	14	10	9
12	2	16	12	8	8

(1)

(2)

(3) (4) (5) (6)

(7)

RUN;

Inferential Statistics Repeated Measures: One Within Factor and One Between Factor Design SAS Code

	ORMAI,					
	VALUE ANX	FMT				
	1 ="1	. Low	Anxiet	У"		
	2=" 2	. High	h Anxie	ty";		
UN;						
DATA T	ESTING_TIM	E;				
	INPUT ID A	NXIETY	Y TRIAL	1 TRIA	L2 TRI	AL3 TRIAL4;
	FORMAT ANX	IETY /	ANX_FMT	• ;		
	LINES;	_				
	1	1	18	14	12	6
	2	1	19	12	8	4
	3	1	14	10	6	2
	4	1	10	12	10	4
	5	1	12	8	6	2
	0 7	1 2	16	10	2	1
	8	2	18	8	4	~ 1
	9	2	16	12	6	÷ 2
	10	2	19	16	10	8
	11	2	16	14	10	9
	12	2	16	12	8	8
ROC P	RINT DATA=	TESTI	NG_TIME	;		
		mpomti				
ROC M	BY ANXIETY	:		,		
RUN:		,				
PROC G	LM DATA=TE	STING	TIME;			
PROC G	LM DATA=TE CLASS ANXI	STING_ ETY;	_TIME;			
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA	STING ETY; L1-TRI	_TIME; IAL4=AN	XIETY	/ NOUN	I;
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI	STING ETY; L1-TRI ETY /	_TIME; IAL4=AN HOVTES	XIETY T=LEVE	/ NOUN NE (TYP	I; E=ABS);
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T	STING ETY; L1-TR ETY / RIAL ,	_TIME; IAL4=AN HOVTES / PRINT	XIETY T=LEVE E;	/ NOUN NE (TYP	I; E=ABS);
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN	STING ETY; L1-TR: ETY / RIAL , XIETY	_TIME; IAL4=AN HOVTES / PRINT / PDIF	XIETY T=LEVE E; F CL A	/ NOUN NE (TYP DJUST=	I; E=ABS); BON;
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep	STING ETY; L1-TR ETY / RIAL , XIETY eated	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur	XIETY T=LEVE E; F CL A es ANO	/ NOUN NE(TYF DJUST= VA: Te	I; E=ABS); BON; sting Time'
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep	STING ETY; L1-TR: ETY / RIAL , XIETY eated	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur	XIETY T=LEVE E; F CL A es ANO	/ NOUN NE(TYF DJUST= VA: Te	I; E=ABS); BON; sting Time'
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep	STING ETY; L1-TR: ETY / RIAL , XIETY eated	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur	XIETY T=LEVE E; F CL A es ANO	/ NOUN NE(TYF DJUST= VA: Te	I; E=ABS); BON; sting Time'
PROC G RUN; FITLE; DATA T	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep ESTING_TIM	STING ETY; L1-TR: ETY / RIAL , XIETY eated E_2;	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur	XIETY T=LEVE E; F CL A es ANO	/ NOUN NE(TYP DJUST= VA: Te	I; E=ABS); BON; sting Time'
PROC G RUN; TITLE; DATA T	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep ESTING_TIM SET TESTIN	STING ETY; L1-TR: ETY / RIAL , XIETY eated E_2; G_TIM	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur E;	XIETY T=LEVE E; F CL A es ANO	/ NOUN NE(TYF DJUST= VA: Te	I; E=ABS); BON; sting Time'
PROC G RUN; FITLE; DATA T	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep ESTING_TIM SET TESTIN SCORE=TRIA	STING ETY; L1-TR: ETY / RIAL , XIETY eated E_2; G_TIMM L1; TH	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur E; RIAL=1;	XIETY T=LEVE F CL A es ANO OUTPU	/ NOUN NE(TYP DJUST= VA: Te T;	I; E=ABS); BON; sting Time'
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep ESTING_TIM SET TESTIN SCORE=TRIA	STING ETY; L1-TR: ETY / RIAL , XIETY eated E_2; G_TIMH L1; TH L2; TH	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur E; RIAL=1; RIAL=2;	XIETY T=LEVE F CL A es ANO OUTPU OUTPU	/ NOUN NE(TYP DJUST= VA: Te T;	I; E=ABS); BON; sting Time'
PROC G	LM DATA=TE CLASS ANXI MODEL TRIA MEANS ANXI REPEATED T LSMEANS AN TITLE "Rep ESTING_TIM SET TESTIN SCORE=TRIA SCORE=TRIA	STING ETY; L1-TR: ETY / RIAL , XIETY eated E_2; G_TIMH L1; TH L2; TH L3; TH	_TIME; IAL4=AN HOVTES / PRINT / PDIF Measur E; RIAL=1; RIAL=2; RIAL=3;	XIETY T=LEVE F CL A es ANO OUTPU OUTPU OUTPU	/ NOUN NE(TYP DJUST= VA: Te T; T; T;	I; E=ABS); BON; sting Time'

97

DROP TRIAL1-TRIAL4;

```
PROC PRINT DATA=TESTING_TIME_2;
RUN;
(8) PROC GLM DATA=TESTING_TIME_2 ORDER=INTERNAL PLOTS=DIAGNOSTICS;
CLASS ID ANXIETY TRIAL;
(9) MODEL SCORE=ID ANXIETY TRIAL;
(10) LSMEANS TRIAL / PDIFF CL ADJUST=BON;
TITLE "Bonferroni Post-Hoc Comparisons";
RUN;
TITLE;
QUIT;
```

- (1) The BY statement requires PROC MEANS to calculate statistics for each level of ANXIETY; in other words, it will calculate statistics for each TRIAL*ANXIETY cell.
- (2) This PROC GLM step is the correct step for repeated measures ANOVA. These are the correct results to use and report for this analysis. The output from this PROC GLM should be reported as the repeated measures ANOVA results.
- (3) As always, the MODEL statement is written as DV(s) = IV(s). Repeated measures ANOVA can be approached from a univariate (single DV) perspective or a multivariate (multiple DV) perspective. It is for this reason that you will see the repeated measures variable(s) placed in the MODEL statement to the left of the equal sign (=) where the DVs belong. In this case, the trials (TRIAL1, TRIAL2, TRIAL3, and TRIAL4) are the within (repeated) factors, so they are treated as the DVs. You have the option of writing each of these DVs individually, but writing TRIAL1-TRIAL4 is quicker. ANXIETY is a between (grouping) factor, which is treated as an IV and written to the right of the equal sign. The NOUNI option suppresses some univariate output that you will not need.
- (4) The MEANS statement with the option HOVTEST=LEVENE will conduct Levene's Test of Homogeneity of Variances, to test the assumption that the cells have equal variances, for TRIAL1-TRIAL4.
- (5) The REPEATED statement is what makes this a repeated measures analysis. For the purpose of making the output more informative, you can follow the statement REPEATED with a word to describe/name the repeated measure being analyzed; in this case, it was named TRIAL. (TIME and TREATMENT may be good options in other circumstances.) It is important for you to understand that this word is not a variable; it is just a label that SAS will use in the output. The PRINTE option produces supplemental output, including Mauchly's Test of Sphericity.
- (6) The LSMEANS ("least squares" or "estimated marginal" means) statement requests the adjusted means, as well as the Bonferroni post-hoc comparisons, for the *between factor(s)*. The CL option requests confidence limits (confidence intervals) for the results.
- (7) Unfortunately, if you need Bonferroni post-hoc testing of the *within factor(s)*, you cannot get it with the previous PROC GLM code. In order to get Bonferroni results, you will first need to "reshape" your data; you will need to go from the "wide" format you began with to a "long" format. In this DATA step, a long data format is created and named TESTING_TIME_2.
- (8) This PROC GLM step is used generate the Bonferroni post-hoc comparisons. Do NOT use or report any of the other results from this step. Some of the results from

this PROC GLM will match the repeated measures ANOVA results, but some of the results are different. Only the Bonferroni post-hoc comparisons should be reported.

- (9) The MODEL statement includes the ID variable as an IV. Note that the new variable SCORE is the DV and the new grouping variable TRIAL is an IV.
- (10) The LSMEANS ("least squares" or "estimated marginal" means) statement requests the adjusted means, as well as the Bonferroni post-hoc comparisons. The CL option requests confidence limits (confidence intervals) for the results.

Inferential Statistics Repeated Measures: One Within Factor and One Between Factor Design Selected Output

Obs	ID	ANXIETY	TRIAL1	TRIAL2	TRIAL3	TRIAL4
1	1	1. Low Anxiety	18	14	12	6
2	2	1. Low Anxiety	19	12	8	4
3	3	1. Low Anxiety	14	10	6	2
4	4	1. Low Anxiety	16	12	10	4
5	5	1. Low Anxiety	12	8	6	2
6	6	1. Low Anxiety	18	10	5	1
7	7	2. High Anxiety	16	10	8	4
8	8	2. High Anxiety	18	8	4	1
9	9	2. High Anxiety	16	12	6	2
10	10	2. High Anxiety	19	16	10	8
11	11	2. High Anxiety	16	14	10	9
12	12	2. High Anxiety	16	12	8	8

The MEANS Procedure

ANXIETY=1. Low Anxiety

Variable	Ν	Mean	Std Dev	Minimum	Maximum
ID	6	3.5000000	1.8708287	1.0000000	6.0000000
TRIAL1	6	16.1666667	2.7141604	12.0000000	19.0000000
TRIAL2	6	11.0000000	2.0976177	8.0000000	14.0000000
TRIAL3	6	7.8333333	2.7141604	5.0000000	12.0000000
TRIAL4	6	3.1666667	1.8348479	1.0000000	6.0000000

ANXIETY=2. High Anxiety

Variable	Ν	Mean	Std Dev	Minimum	Maximum
ID	6	9.5000000	1.8708287	7.0000000	12.0000000
TRIAL1	6	16.8333333	1.3291601	16.0000000	19.0000000
TRIAL2	6	12.0000000	2.8284271	8.0000000	16.0000000
TRIAL3	6	7.6666667	2.3380904	4.0000000	10.0000000
TRIAL4	6	5.3333333	3.4448028	1.0000000	9.0000000

The assumption of homogeneity of variances for the "anxiety" and "no anxiety" groups was found to be tenable for TRIAL1, F(1, 10) = 3.31, p = .099.

The assumption of homogeneity of variances for the "anxiety" and "no anxiety" groups was found to be tenable for TRIAL2, F(1, 10) = 0.16, p = .701.

The assumption of homogeneity of variances for the "anxiety" and "no anxiety" groups was found to be tenable for TRIAL3, F(1, 10) = 0.27, p = .617.

The assumption of homogeneity of variances for the "anxiety" and "no anxiety" groups was not found to be tenable for TRIAL4, F(1, 10) = 7.79, p = .019.

		The GLM	Procedure							
		the other	Tooodaro							
Le At	Levene's Test for Homogeneity of TRIAL1 Variance ANOVA of Absolute Deviations from Group Means									
Source	DF	DF Sum of Squares Mean Square		F Value	Pr > F					
ANXIETY	1	3.3426	3.3426	3.31	0.0988					
Error	10	10.0926	1.0093							
Le At	vene IOVA	's Test for Homoge of Absolute Devia	eneity of TRIAL2 ations from Gro	2 Variance up Means	Ð					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
ANXIETY	1	0.3333	0.3333	0.16	0.7009					
Error	10	21 3333	2 1222							
21.555 2.1555										
	10	21.5555	2.1333							
Le	vene IOVA	's Test for Homoge of Absolute Devia	eneity of TRIALS	3 Varianco up Means	Ð					
Le At Source	vene IOVA DF	's Test for Homoge of Absolute Devia Sum of Squares	eneity of TRIAL3 ations from Gro Mean Square	3 Variance up Means F Value	e Pr > F					
Le Al Source ANXIETY	vene IOVA DF 1	's Test for Homogo of Absolute Devia Sum of Squares 0.4537	eneity of TRIAL3 ations from Gro Mean Square 0.4537	3 Variance up Means F Value 0.27	e Pr > F 0.617(
Le At Source ANXIETY Error	vene IOVA DF 1	s Test for Homoge of Absolute Devia Sum of Squares 0.4537 17.0370	eneity of TRIAL: ations from Gro Mean Square 0.4537 1.7037	3 Variance up Means F Value 0.27	Pr > F 0.6170					
Le Al Source ANXIETY Error	vene IOVA DF 1 10-	's Test for Homogra of Absolute Devia Sum of Squares 0.4537 17.0370	eneity of TRIAL3 ations from Gro Mean Square 0.4537 1.7037	3 Varianco up Means F Value 0.27	Pr > F 0.617(
Le At Source ANXIETY Error Le At	vene IOVA DF 1 10- vene NOVA	s Test for Homogu of Absolute Devia Sum of Squares 0.4537 17.0370 s Test for Homogu of Absolute Devia	Mean Square 0.4537 1.7037 2.1035 2.1037 2.10	3 Variance up Means F Value 0.27 4 Variance up Means	Pr > F 0.617(
Le AN Source ANXIETY Error Le AN Source	vene IOVA DF 1 10- 10- NOVA	s Test for Homogu of Absolute Devia Sum of Squares 0.4537 17.0370 s Test for Homogu of Absolute Devia Sum of Squares	2.1333 eneity of TRIAL2 ations from Gro Mean Square 0.4537 1.7037 eneity of TRIAL4 ations from Gro Mean Square	3 Variance up Means F Value 0.27 4 Variance up Means F Value	Pr > F 0.6170 Pr > F					

8.6667

0.8667

10

Error

Level of ANXIETY		TRI	AL1	TRI	AL2	TRI	AL3	TRI	AL4
	N	Mean	Std Dev						
1. Low Anxiety	6	16.1666667	2.71416040	11.0000000	2.09761770	7.83333333	2.71416040	3.16666667	1.83484786
2. High Anxiety	6	16.8333333	1.32916014	12.0000000	2.82842712	7.66666667	2.33809039	5.33333333	3.44480285

The assumption of sphericity was found to be tenable, Mauchly's criterion (5) = 0.283, $\chi^2 = 11.011$, p = .051. [Note: The "Orthogonal Components" results are reported.]

Sphericity Tests						
Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq		
Transformed Variates	5	0.1588511	16.04704	0.0067		
Orthogonal Components	5	0.282986	11.010565	0.0512		

This output is from the multivariate perspective, and you may disregard it.

MANOVA	Test Criteria and Exact F H = Type III	Statistics for the SSCP Matrix for	Hypothesis of no TRIAL	TRIAL	Effect
	E = Er	ror SSCP Matrix			

	S=1 M=0.	.5 N=3				
Statistic	Value F Val		Num DF	Den DF	Pr > F	
Wilks' Lambda	0.03949423	64.85	3	8	<.0001	
Pillai's Trace	0.96050577	64.85	3	8	<.0001	
Hotelling-Lawley Trace	24.32015172	64.85	3	8	<.0001	
Roy's Greatest Root	24.32015172	64.85	3	8	<.0001	

This output is from the multivariate perspective, and you may disregard it.

MANOVA	Test Criteria	and Exact F	Statistics for t	he Hypothesis	of no	TRIAL*ANXIETY E	ffect
		H = Type III	SSCP Matrix	for TRIAL*ANX	IETY		
			E - Error SSCE	Matrix			

S=1 M=0.5 N=3									
Statistic	Value	F Value	Num DF	Den DF	Pr > F				
Wilks' Lambda	0.52102440	2.45	3	8	0.1381				
Pillai's Trace	0.47897560	2.45	3	8	0.1381				
Hotelling-Lawley Trace	0.91929590	2.45	3	8	0.1381				
Roy's Greatest Root	0.91929590	2.45	3	8	0.1381				

Repeated Measures ANOVA Results (Between Subjects Effects)

There was not a significant effect of ANXIETY on math test scores, F(1, 10) = 0.59, p = .460.

Repeated Measures ANOVA: Testing Time

The GLM Procedure Repeated Measures Analysis of Variance Tests of Hypotheses for Between Subjects Effects

Source	DF	Type III SS	Mean Square	F Value	Pr > F
ANXIETY	1	10.0833333	10.0833333	0.59	0.4602
Error	10	170.9166667	17.0916667		

Repeated Measures ANOVA Results (Within Subjects Effects)

There was not a significant difference between TRIAL*ANXIETY means, F(3, 30) = 1.09, p = .368. There was a significant difference between TRIAL means, F(3, 30) = 128.63, p < .001.

Repeated Measures ANOVA: Testing Time

The GLM Procedure Repeated Measures Analysis of Variance Univariate Tests of Hypotheses for Within Subject Effects

						Adj Pr > F	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	G - G	H-F-L
TRIAL	3	991.5000000	330.5000000	128.63	8 <.0001	<.0001	<.0001
TRIAL*ANXIETY	3	8.4166667	2.8055556	1.09	0.3677	0.3463	0.3529
Error(TRIAL)	30	77.0833333	2.5694444				
		Greenhouse-Geisser Epsilon		n 0.54	41		
		Huynh-Feldt-Lecoutre Epsilon		on 0.63	55		

If the assumption of sphericity is NOT tenable, the Greenhouse-Geisser (G-G) or Huynh-Feldt (H-F) adjusted *p* value, along with the associated epsilon value, should be reported.
i j

1 2

	tor multiple comp	unisons. Don	ierroini	
	H0:LSMean1=LSMea			
ANXIETY	TRIAL1 LSMEAN	Pr >		
1. Low Anxiety	16.1666667		0.6008	
2. High Anxiety	16.8333333			
ANXIETY	TRIAL1 LSMEAN	95% Confide	ence Limits	
1. Low Anxiety	16.166667	14.222801	18.110532	
2. High Anxiety	16.833333	14.889468	18.777199	

for LSMean(i)-LSMean(j)

2.082375

-3.415708

Means

-0.666667

Bonferroni post-hoc testing is not required here because ANXIETY (a) was not significant and (b) only has two levels.

		H0:LSMean1=LSMean2				
ANXIETY	TRIAL2 L SMEAN	NN Pr > 00 0.502				
1. Low Anxiety	11.000000					
2. High Anxiety	12.000000					
ANXIETY	TRIAL2 LSMEAN	95% Confidence Limits				
1. Low Anxiety	11.000000	8.735030	13.264970			
2. High Anxiety	12.000000	9,735030	14.264970			

		Least Squares	Means for Effect ANXIE	TY			
i	j	Difference Between Means	Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j)				
1	2	-1.000000	-4.203151	2.203151			

		H0:LSMean1=LSMean2				
ANXIETY	TRIAL3 LSMEAN	N Pr: 3 0.9				
1. Low Anxiety	7.83333333					
2. High Anxiety	7.66666667					
ANXIETY	TRIAL3 LSMEAN	95% Confid	ence Limits			
1. Low Anxiety	7.833333	5.529127	10.137540			
2. High Anxiety	7.666667	5.362460	9.970873			

Least Squares Means for Effect ANXIETY								
i	j	Difference Between Means Simultaneous 95% Confidence for LSMean(i)-LSMean(j)						
1	2	0.166667	-3.091973	3.425307				

		H0:LSMean1=LSMean2					
ANXIETY	TRIAL4 LSMEAN	N Pr > 7 0.20		N P			
1. Low Anxiety	3.16666667						
2. High Anxiety	5.33333333						
ANXIETY	TRIAL4 LSMEAN	95% Confide	nce Limits				
1. Low Anxiety	3.166667	0.656231	5.677102				
2. High Anxiety	5.333333	2.822898	7.843769				

	Least Squares Means for Effect ANXIETY								
i	j	Difference Between Means	Simultaneous 95% Confidence Limits for LSMean(i)-LSMean(j)						
1 2		-2.166667	-5.716959	1.383626					

Bonferroni Post-Hoc Comparisons

The GLM Procedure Least Squares Means Adjustment for Multiple Comparisons: Bonferroni

TRIAL	SCORE LSMEAN	LSMEAN Number
1	16.5000000	1
2	11.5000000	2
3	7.7500000	3
4	4.2500000	4

Least Squares Means for effect TRIAL Pr > t for H0: LSMean(i)=LSMean(j) Dependent Variable: SCORE								
i/j	1	2	3	4				
1		<.0001	<.0001	<.0001				
2	<.0001		<.0001	<.0001				
3	<.0001	<.0001		<.0001				
4	<.0001	<.0001	<.0001					

Bonferroni post-hoc testing revealed that all pairwise TRIAL comparisons were significant (p < .001).

TRIAL	SCORE LSMEAN	95% Confide	ence Limits	
1	16.500000	15.554642	17.445358	
2	11.500000	10.554642	12.445358	
3	7.750000	6.804642	8.695358	
4	4.250000	3.304642	5.195358	

		Least Square	s Means for Effect TRIA	L
i	j	Difference Between Means	Simultaneous 95% Cor for LSMean(i)-L	nfidence Limits SMean(j)
1	2	5.000000	3.155597	6.844403
1	3	8.750000	6.905597	10.594403
1	4	12.250000	10.405597	14.094403
2	3	3.750000	1.905597	5.594403
2	4	7.250000	5.405597	9.094403
3	4	3.500000	1.655597	5.344403

Inferential Statistics Simple Linear Regression Research Scenario

A cereal-lover would like to lose weight and is interested to know if the amount of complex carbohydrates in his cereal significantly affects the cereal's calorie count. The complex carbohydrates are measured in grams; carbohydrates and calories values are per serving.

This analysis will use the "UScereal.csv" file that can be found as a companion with this SAS guide. If you prefer to enter the data manually, instead of reading in the data file, the raw data for the variables of interest may be found in the Appendix of this guide.

	А	В	С	D	E	F	G	Н	1	J	K	L
1	CEREAL	MFR	CALORIES	PROTEIN	FAT	SODIUM	FIBER	CARBO	SUGARS	SHELF	POTASSIUM	VITAMINS
2	100% Bran	N	212.1212	12.12121	3.0303	393.9394	30.30303	15.15152	18.18182	3	848.48485	enriched
3	All-Bran	K	212.1212	12.12121	3.0303	787.8788	27.27273	21.21212	15.15152	3	969.69697	enriched
4	All-Bran with Extra Fiber	K	100	8	0	280	28	16	0	3	660	enriched
5	Apple Cinnamon Cheerios	G	146.6667	2.66667	2.66667	240	2	14	13.33333	1	93.33333	enriched
6	Apple Jacks	K	110	2	0	125	1	11	14	2	30	enriched
7	Basic 4	G	173.3333	4	2.66667	280	2.66667	24	10.66667	3	133.33333	enriched
8	Bran Chex	R	134.3284	2.98507	1.49254	298.5075	5.97015	22.38806	8.95522	1	186.56716	enriched
9	Bran Flakes	Ρ	134.3284	4.47761	0	313.4328	7.46269	19.40299	7.46269	3	283.58209	enriched
10	Cap'n'Crunch	Q	160	1.33333	2.66667	293.3333	0	16	16	2	46.66667	enriched
11	Cheerios	G	88	4.8	1.6	232	1.6	13.6	0.8	1	84	enriched
12	Cinnamon Toast Crunch	G	160	1.33333	4	280	0	17.33333	12	2	60	enriched
13	Clusters	G	220	6	4	280	4	26	14	3	210	enriched
14	Cocoa Puffs	G	110	1	1	180	0	12	13	2	55	enriched
15	Corn Chex	R	110	2	0	280	0	22	3	1	25	enriched
16	Corn Flakes	К	100	2	0	290	1	21	2	1	35	enriched
17	Corn Pops	К	110	1	0	90	1	13	12	2	20	enriched
18	Count Chocula	G	110	1	1	180	0	12	13	2	65	enriched
19	Cracklin' Oat Bran	К	220	6	6	280	8	20	14	3	320	enriched
20	Crispix	К	110	2	0	220	1	21	3	3	30	enriched
21	Crispy Wheat & Raisins	G	133.3333	2.66667	1.33333	186.6667	2.66667	14.66667	13.33333	3	160	enriched

Source of Data: StatLib. (1993). *Serial correlation or cereal correlation?*? [Data file]. Retrieved from http://lib.stat.cmu.edu/datasets/1993.expo/

Inferential Statistics Simple Linear Regression SAS Code

```
DATA US CEREAL;
(1)
            INFILE "C:\UScereal.CSV" FIRSTOBS=2 DSD MISSOVER;
(2)
            INPUT CEREAL $ MFR $ CALORIES PROTEIN FAT SODIUM
                  FIBER CARBO SUGARS SHELF POTASSIUM VITAMINS $;
(3)
            KEEP CALORIES CARBO;
      RUN;
      PROC PRINT DATA=US CEREAL;
      RUN;
      PROC CORR DATA=US CEREAL PLOTS=SCATTER(ELLIPSE=NONE);
      RUN;
      PROC GLM DATA=US CEREAL PLOTS=(DIAGNOSTICS RESIDUALS);
(4)
(5)
            MODEL CALORIES=CARBO / CLPARM;
            TITLE "Simple Linear Regression: US Cereal";
      RUN;
(6)
      PROC REG DATA=US CEREAL
                 PLOTS (LABEL) = (COOKSD RSTUDENTBYLEVERAGE DFFITS DFBETAS);
(7)
(8)
            MODEL CALORIES=CARBO;
            TITLE "Simple Linear Regression: US Cereal";
      RUN;
      TITLE;
      OUIT;
```

Note: There are two primary ways of performing a simple linear regression in SAS: PROC GLM and PROC REG. Both methods return the exact same results, so you can use either procedure. However, there are some supplemental results provided by PROC REG that are not provided by PROC GLM (e.g., adjusted R-square) and vice versa, so you may want to run both simultaneously so that you have everything you need. Both procedures are modeled here.

- (1) The INFILE statement is used to identify the file path and file name of the raw data file. The optional statement FIRSTOBS=2 tells SAS that the first observation is located on Row 2 (in this case, because Row 1 of the data file contains the variable names). The DSD (delimiter-separated data) option performs two functions here. First, it tells SAS that the data is separated by commas (i.e. it is a .CSV file). Second, if two consecutive commas are found, it forces SAS to treat that as missing data. If the end of an observation (row) is blank, there will not be two consecutive commas, but you still need to treat it as missing data; the MISSOVER option is used to accomplish this.
- (2) In the same manner as when you manually entered data, the INPUT statement creates the variable names and assigns the order of the variables to the new dataset. This command also assigns a variable type to each new variable. The default variable type is *numeric*. If a *character* variable is being created, put a dollar sign (\$) in back of it.

- (3) You must read in every variable in order. However, for the purpose of this analysis, we only need to KEEP two of the variables: CALORIES and CARBO.
- (4) This is the PROC GLM method of simple linear regression.
- (5) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV). The CLPARM option requests the confidence limits (confidence interval) for the parameter estimates.
- (6) This is the PROC REG method of simple linear regression.
- (7) Both PROC REG and PROC GLM include diagnostic plots that help determine if outliers are exerting undue influence on the regression analysis. However, only PROC REG offers the LABEL option. This option requests that the observation numbers of influential observations be included in the graphics, making it much easier to determine which observations (if any) are impacting the results.
- (8) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV).

Inferential Statistics Simple Linear Regression Selected Output

The CORR Procedure											
2 Variables: CALORIES CARBO											
Simple Statistics											
Variable	N	Mean	St	d Dev	Sum	Minimum	Maximum				
CALORIES 65 149.40826 62.41187 9712 50.00000 440.00000											
CARBO	6 5	5 19.96762 8.46847 1298 10.52632 68.00000									

Pearson Correlation Coefficients, N = 65 Prob > r under H0: Rho=0									
CALORIES CARB									
CALORIES	1.00000	0.78872 <.0001							
CARBO	0.78872 <.0001	1.00000							

Residual

0.0 0.4 0.8 0.0 0.4 0.8

Proportion Less

-125 -50 25 100

Inferential Statistics Multiple Regression Research Scenario

A botanist decides to test whether temperature and rainfall are good predictors of plant height.

This analysis will use the "Plant_Height.csv" file that can be found (A) as a companion with this SAS guide or (B) at the website below by scrolling down to the "Running the analysis" section and clicking on the download link. Please be aware that, if you choose to download the file from the website, you will need to complete the following "cleaning" of the dataset.

- 1. Remove all commas from Column I ("Site"). You will be reading this file as a .CSV (comma-separated value) file. These commas in the data would cause SAS to act as though it was reading data for the variable in Column J when it was still reading Column I.
- 2. Change all "NA" values to blanks or periods in Columns AG and AH. This is because Columns AG and AH are numeric data. In SAS, a period is used to represent missing numeric data. ("NA" would be considered character data.)
- 3. Column B is named "site" (lowercase) and Column I is named "Site" (with a capital). You do not have to change anything, but be aware that the SAS code herein is written such that the variable in Column I will be called SITE_NAME to differentiate the two variables.

If you use the "Plant_Height.csv" file that can be found as a companion with this SAS guide, this cleaning has already been completed for you.

If you prefer to enter the data manually, instead of reading in the data file, the raw data for the variables of interest may be found in the Appendix of this guide.

	Α	В	С	D	E	F	G	н	1	J	K	L	М	N	
1	sort_num	site	Genus_sp	Family	growthfor	height	loght	Country	Site	lat	long	entered.b	alt	temp	diu
2	1402	193	Acer_mac	Sapindace	Tree	28	1.447158	USA	Oregon - I	44.6	-123.334	Angela	179	10.8	
3	25246	103	Quararibe	Malvacea	Tree	26.6	1.424882	Peru	Manu	12.183	-70.55	Angela	386	24.5	
4	11648	54	Eragrostis	Poaceae	Herb	0.3	-0.52288	Australia	Central Au	23.8	133.833	Michelle	553	20.9	
5	8168	144	Cistus_sal	Cistaceae	Shrub	1.6	0.20412	Israel	Hanadiv	32.555	34.938	Angela	115	19.9	
6	22422	178	Phlox_bifi	Polemoni	Herb	0.2	-0.69897	USA	Indiana D	41.617	-86.95	Michelle	200	9.7	
7	15925	59	Homalium	Salicaceae	Shrub	1.7	0.230449	New Cale	NA	21.5	165.5	Laura	95	22.6	
8	25151	27	Pultenaea	Fabaceae	Shrub	0.5	-0.30103	Australia	Kuringai C	33.65	151.2	Michelle	157	16.8	
9	26007	118	Rhizophor	Rhizophor	Tree	10	1	NA	Marshall I	9	168	Laura	2	27.7	
10	6597	154	Carya_ova	Juglandac	Tree	40	1.60206	USA	Colorado	35.8	-89.9	Angela	71	15.5	
11	16908	106	Ischaemu	Poaceae	Herb	0.5	-0.30103	Australia	Christmas	10.417	105.667	Laura	2	26.4	
12	4610	201	Betula_na	Betulacea	Shrub	0.55	-0.25964	Estonia	NA	58.5	25	Angela	28	5.4	
13	1593	86	Acmena_g	Myrtaceae	Tree	32	1.50515	Australia	Cairns - Da	16.103	145.446	Angela	263	25.2	
14	22359	69	Phaleria i	Thymelae	Tree	5	0.69897	Fiji	Viti Levu	17.8	178	Laura	1108	19.3	

Source of Data: Letten, A. (2016). *Linear regression*. Retrieved from http://environmentalcomputing.net/linear-regression/

Inferential Statistics Multiple Regression SAS Code

(1)(2)	DATA	<pre>PLANT_HEIGHT; INFILE "C:\Plant_Height.CSV" FIRSTOBS=2 DSD MISSOVER; INPUT SORT_NUMBER SITE GENUS_SPECIES \$ FAMILY \$ GROWTHFORM \$ HEIGHT LOGHT COUNTRY \$ SITE_NAME \$ LAT LONG ENTERED_BY \$ ALT TEMP DIURN_TEMP ISOTHERM TEMP_SEAS TEMP_MAX_WARM TEMP_MIN_COLD TEMP_ANN_RANGE TEMP_MEAN_WETQR TEMP_MEAN_DRYQR TEMP_MEAN_WARMQR TEMP_MEAN_COLDQR RAIN RAIN_WETM RAIN_DRYM_RAIN_SEAS_RAIN_WETQR_RAIN_DRYQR RAIN_WARMQR_RAIN_COLDQR_LAI_NPP_HEMISPHERE; KEEP_HEIGHT_LOGHT_TEMP_BAIN.</pre>
(5)	RUN;	DELVE DARA-DIANE HEICHE.
	RUN;	PRINT DATA-PLANI_HEIGHI;
	PROC RUN;	CORR DATA=PLANT_HEIGHT PLOTS=SCATTER(ELLIPSE=NONE);
(4) (5)	DATA	PLANT_HEIGHT; SET PLANT_HEIGHT;
(0)	RUN;	DROP HEIGHI;
	PROC RUN;	PRINT DATA=PLANT_HEIGHT;
	PROC RUN;	CORR DATA=PLANT_HEIGHT PLOTS=SCATTER(ELLIPSE=NONE);
(7) (8) (9) (10)	PROC	<pre>GLM DATA=PLANT_HEIGHT PLOTS=(DIAGNOSTICS RESIDUALS); MODEL LOGHT=TEMP RAIN / CLPARM; OUTPUT OUT=INFLUENCE_RESULTS PREDICTED=Y_PRED RESIDUAL=RESID STUDENT=SRESID H=HAT_H COOKD=COOKS_D DFFITS=DFFITS LCLM=LCL_MEAN UCLM=UCL_MEAN LCL=LCL_INDIVID WCL=UCL_INDIVID PRESS=PRESS;</pre>
	RUN;	TITLE "Multiple Regression: Plant Height";
	TITL	Ξ;

(11) **PROC PRINT** DATA=INFLUENCE_RESULTS;

```
RUN;
(12)
      PROC CORR DATA=INFLUENCE RESULTS;
(13)
            VAR TEMP RAIN RESID;
      RUN;
(14)
      PROC EXPORT DATA=INFLUENCE RESULTS
(15)
            OUTFILE="C:\temp\PlantHeight Influence.CSV"
(16)
            REPLACE;
      RUN;
(17)
      PROC REG DATA=PLANT HEIGHT
(18)
                  PLOTS (LABEL) = (COOKSD RSTUDENTBYLEVERAGE DFFITS DFBETAS);
(19)
            MODEL LOGHT=TEMP RAIN / INFLUENCE TOL VIF PARTIAL;
            TITLE "Multiple Regression: Plant Height";
      RUN;
      TITLE;
     DATA PLANT HEIGHT 2;
(20)
(21)
          SET PLANT HEIGHT;
(22)
           ID = N;
            IF ID=22 OR ID=102 OR ID=146 THEN DELETE;
(23)
      RUN;
(24)
      PROC PRINT DATA=PLANT HEIGHT 2;
      RUN;
      TITLE;
      OUIT;
```

Note 1: There are two primary ways of performing a simple linear regression in SAS: PROC GLM and PROC REG. Both methods return the exact same results, so you can use either procedure. However, there are some supplemental results provided by PROC REG that are not provided by PROC GLM (e.g., adjusted R-square) and vice versa, so you may just want to run both simultaneously so that you have everything you need. Both procedures are modeled here.

Note 2: The code for multiple regression is EXACTLY the same as the code for simple linear regression except that there is at least one more IV in the MODEL statement [Lines (8) and (19) of this example]. The multiple regression code presented here is comprehensive. It includes additional (optional) code for conducting diagnostic analyses, predictive analyses, etc., topics which you will learn throughout EPRS 8550. If you are in the first few weeks of the course and are learning multiple regression for the first time, you are welcome to use the simple linear regression code from the previous section of this SAS guide. All you need to do is make sure you include all of your IVs in the PROC GLM and PROC REG MODEL statements.

(1) The INFILE statement is used to identify the file path and file name of the raw data file. The optional statement FIRSTOBS=2 tells SAS that the first observation is located on Row 2 (in this case, because Row 1 of the data file contains the variable names). The DSD (delimiter-separated data) option performs two functions here. First, it tells SAS that the data is separated by commas (i.e. it is a .CSV file). Second, if two consecutive commas are found, it forces SAS to treat that as missing data. If the end of an observation (row) is blank, there will not be two consecutive commas, but you still need to treat it as missing data; the MISSOVER option is used to accomplish this.

- (2) In the same manner as when you manually entered data, the INPUT statement creates the variable names and assigns the order of the variables to the new dataset. This command also assigns a variable type to each new variable. The default variable type is *numeric*. If a *character* variable is being created, put a dollar sign (\$) in back of it.
- (3) You must read in every variable in order. However, for the purpose of this analysis, we only need to KEEP four of the variables: HEIGHT, LOGHT, TEMP, and RAIN.
- (4) From the output shown below, you will see that it is prudent to drop HEIGHT from the model. This DATA step is used to rewrite the PLANT_HEIGHT dataset without HEIGHT.
- (5) The data from the previous PLANT_HEIGHT dataset is copied to the new PLANT_HEIGHT dataset using the SET statement.
- (6) The DROP statement is used to drop HEIGHT from the dataset.
- (7) This is the PROC GLM method of simple linear regression.
- (8) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV). The CLPARM option requests the confidence limits (confidence interval) for the parameter estimates.
- (9) PROC GLM offers a wide variety of influence statistics, some of which are not available in PROC REG. However, it will not produce influence statistics in the output window. Instead, you must request that SAS create an output dataset by using the OUTPUT statement. Next, use OUT= to assign that dataset a name; in this case, the name of the new dataset is INFLUENCE_RESULTS.
- (10) Beginning with Line (10), you need to identify every influence statistic you want included in the new dataset; this will be written to the left of the equal sign. Then, you need to assign each statistic the name you want it to have in your new dataset; this will be written to the right of the equal sign. For example, in Line (10), the PREDICTED statistic is being requested; it will be called Y_PRED in the new dataset. (*Note: You can use the same name on the left and right of the equal sign if you want.*) All of the influence statistics included in this code will be taught in EPRS 8550. (3)
 - PREDICTED: The predicted value of Y (Y')
 - RESIDUAL: The residual (Y Y')
 - STUDENT: The residual divided by its standard error (studentized residuals; SRESID)
 - RSTUDENT: A studentized residual with the current observation deleted (SDRESID)
 - H: Leverage
 - COOKD: Cook's D
 - DFFITS: Standard influence of observation on predicted value
 - LCLM: Lower confidence limit for the conditional mean
 - UCLM: Upper confidence limit for the conditional mean
 - LCL: Lower confidence limit for an individual prediction
 - UCL: Upper confidence limit for an individual prediction
 - PRESS: Residual for the *i*th observation that results from dropping it and predicting it on the basis of all other observations. This is the residual divided by $(1 h_i)$, where h_i is the leverage.

- (11) PROC PRINT is used to display the new INFLUENCE_RESULTS dataset in the output window.
- (12) One assumption of multiple regression is that the IVs are independent of (i.e. not correlated to) the model residuals. PROC CORR will generate the correlations to test this assumption.
- (13) The VAR statement tells SAS to generate the correlations for TEMP, RAIN, and RESID (the model residuals from the INFLUENCE_RESULTS dataset).
- (14) In order to find the most influential observations in a large dataset, you may need to sort your influence diagnostics. For example, you may want to sort the studentized residuals from greatest to least. You cannot do this in the output window. You may copy and paste the data from the output window into Excel. Another option is to export the data. PROC EXPORT creates a data file that you can then open and manipulate in Excel. In this case, you want to export the INFLUENCE_RESULTS data.
- (15) The OUTFILE statement assigns a file path, file name, and file extension.
- (16) The REPLACE statement is optional. It tells SAS to replace (overwrite) an existing file of the same name in the same location (if there is one). It is recommended that you include this option in case you make changes to your data or your analysis, because SAS will NOT give you an error or a warning if there is an existing file and you do not replace it. (The log will report this as a blue note, which blends in with all of the other successful log notes. You may think that you overwrote the file, when you did not.)
- (17) This is the PROC REG method of simple linear regression.
- (18) Both PROC REG and PROC GLM include diagnostic plots that help determine if outliers are exerting undue influence on the regression analysis. However, only PROC REG offers the LABEL option. This option requests that the observation numbers of influential observations be included in the graphics, making it much easier to determine which observations (if any) are impacting the results. Notice also that PROC REG has a DFBETA plot. PROC REG offers DFBETA plots and statistics; PROC GLM does not.
- (19) Obtaining influence statistics in PROC REG is much simpler than in PROC GLM; all you have to do is add the INFLUENCE option to the MODEL statement. The influence statistics will appear in the output window. If you want to sort them, you can copy and paste them into Excel. The TOL option requests tolerance statistics; the VIF option requests VIF statistics. The PARTIAL option is used to generate partial regression plots (also called "added variable plots").
- (20) As you can see from the output screenshots in the next section of this guide, there are several data points that may be considered influential. Suppose you decide that it is appropriate to remove Observations #22, 102, and 146 from the analysis. In order to analyze the data without these influential observations, it is best to create a new dataset. In this DATA step, a new dataset, PLANT_HEIGHT_2, is created.
- (21) The SET statement copies the data from PLANT_HEIGHT into PLANT_HEIGHT _2.
- (22) A new variable, ID, is created and each observation is assigned a number from 1 to N.
- (23) If the data is associated with ID #22, 102, or 146, it is deleted. In other words, the influential observations are being deleted from the new dataset.
- (24) In this PROC PRINT, you should now see the new dataset, without those three influential data points. Now, to conduct the analysis without the influential data points, simply re-run all of the above code using PLANT_HEIGHT_2 (instead of PLANT_HEIGHT) as your data.

Note: The decision as to whether to exclude data points must be made carefully. Such a decision should be based on a thorough knowledge of the data and theory. This code is provided so that you have the option to exclude data and rerun analyses; it is not intended as a recommendation that you do so. You must use your best judgment in that regard.

Inferential Statistics Multiple Regression Selected Output

The CORR Procedure

4 Variables: HEIGHT LOGHT TEMP RAIN **Simple Statistics** Variable Ν Std Dev Sum Minimum Maximum Mean HEIGHT 11.31967 0.03220 61.00000 178 8,90899 1586 LOGHT 178 0.45827 0.78657 81.57152 -1.49214 1.78533 TEMP -11.10000 27.70000 178 16.12528 9.20288 2870 RAIN 178 1344 954.78816 239257 73.00000 3991

Pearson Correlation Coefficients, N = 178 Prob > r under H0: Rho=0											
HEIGHT LOGHT TEMP RAI											
HEIGHT	1.00000	0.79848 <.0001	0.22751 0.0023	0.37415 <.0001							
LOGHT	0.79848 <.0001	1.00000	0.49624 <.0001	0.48177 <.0001							
TEMP	0.22751 0.0023	0.49624 <.0001	1.00000	0.55155 <.0001							
RAIN	0.37415 <.0001	0.48177 <.0001	0.55155 <.0001	1.00000							

The correlation between the two IVs, TEMP and RAIN, is significant (p < .001); therefore, multicollinearity may be a problem in this analysis. The variance inflation factor (VIF) should be checked.

The assumption of a linear relationship between TEMP and LOGHT was found tenable based on a visual inspection of the data.

PROC	GLM O	utput				— The Gl	.M Proc	edure					
						Dependent	Variabl	e: LOG	HT				
		5	Source	e	D	Sum of So	quares	Mean	Square	F Value	Pr > F		
		1	Model		:	2 33.7	306895	16.8	903447	39.03	<.0001		
		E	Error		17	5 75.72	266241	0.4	327236				
		(Correc	ted Total	17	7 109.50	073136					TEMP	and PAIN account
	n ² - 1	200	L.	R-S	quar	e Coeff Va	Root	ISE L	OGHT Me	ean		for a si	and KAIN account
	$R^2 =$	308	~	0.3	0847	143.5446	0.657	7817	0.458	267		the va	riation in LOGHT
				Source	DE	Tupo I SS	Moon	Sauaro	E Value	Dra	-	F(2, 17)	(5) = 39.03, p < .001.
			-	TEMP	1	26.96691279	26.96	691279	62.3	2 < 000	1	- (-, -, -,	$R^2 = .308.$
				RAIN	1	6.81377671	6.81	377671	15.7	5 0.000	1		
			1	-							_		
				Source	DF	Type III SS	Mean S		F Value	Pr > F			
					1	6 81377671	6.81	350580	19.33	<.000			
				NAM.		0.01377071	0.01		15.75	0.000	·		
		Param	eter	Estim	ate	Standard Error	t Value	Pr >	t 95%	6 Confid	ence Limits		
		Interce	pt	3294816	828	0.10306038	-3.20	0.001	5328	829265	1260804391		
		TEMP	(0.0283166	976	0.00644101	4.40	<.000	0.0156	6046481	0.0410287471		
		RAIN	(0.0002463	537	0.00006208	3.97	0.000	0.0001	238265	0.0003688808		
						LOC	HT :	=	329 +	028	BTEMP + .	.0002RAIN	1

Obs	LOGHT	TEMP	RAIN	Y_PRED	RESID	SRESID	SDRESID	HAT_H	COOKS_D	DFFITS	LCL_MEAN	UCL_MEAN	LCL_INDIVID	UCL_INDIVID	PRESS
1	1.44716	10.8	1208	0.27393	1.17322	1.79047	1.80193	0.007763	0.008360	0.15938	0.15955	0.38832	-1.02937	1.57724	1.18240
2	1.42488	24.5	3015	1.10703	0.31785	0.48883	0.48776	0.022945	0.001870	0.07475	0.91038	1.30369	-0.20605	2.42012	0.32531
3	-0.52288	20.9	278	0.33082	-0.85370	-1.31305	-1.31579	0.023117	0.013600	-0.20241	0.13343	0.52822	-0.98237	1.64402	-0.87390
4	0.20412	19.9	598	0.38134	-0.17722	-0.27142	-0.27070	0.014814	0.000369	-0.03319	0.22332	0.53936	-0.92652	1.68920	-0.17988
5	-0.69897	9.7	976	0.18563	-0.88460	-1.35042	-1.35362	0.008372	0.005132	-0.12438	0.06684	0.30442	-1.11807	1.48933	-0.89207
6	0.23045	22.6	1387	0.65217	-0.42172	-0.64411	-0.64303	0.009371	0.001308	-0.06254	0.52649	0.77784	-0.65218	1.95651	-0.42571
7	-0.30103	16.8	1283	0.46231	-0.76334	-1.16376	-1.16494	0.005737	0.002605	-0.08849	0.36398	0.56065	-0.83968	1.76431	-0.76775
8	1.00000	27.7	2585	1.09172	-0.09172	-0.14066	-0.14027	0.017536	0.000118	-0.01874	0.91979	1.26364	-0.21790	2.40133	-0.09335
9	1.60206	15.5	1262	0.42033	1.18173	1.80156	1.81330	0.005663	0.006162	0.13685	0.32262	0.51803	-0.88162	1.72227	1.18847
10	-0.30103	26.4	1704	0.83787	-1.13890	-1.74280	-1.75309	0.013124	0.013464	-0.20216	0.68914	0.98659	-0.46890	2.14463	-1.15404
11	-0.25964	5.4	664	-0.01299	-0.24664	-0.37747	-0.37654	0.013331	0.000642	-0.04377	-0.16289	0.13691	-1.31989	1.29391	-0.24998
12	1.50515	25.2	2087	0.89824	0.60691	0.92799	0.92762	0.011557	0.003356	0.10030	0.75867	1.03781	-0.40752	2.20400	0.61401
13	0.69897	19.3	3191	1.00315	-0.30418	-0.46974	-0.46869	0.030988	0.002352	-0.08381	0.77460	1.23169	-0.31509	2.32138	-0.31390
14	0.84510	27.2	3031	1.18743	-0.34233	-0.52668	-0.52559	0.023678	0.002242	-0.08185	0.98765	1.38721	-0.12613	2.50099	-0.35063
15	1.07918	24.8	2770	1.05517	0.02401	0.03684	0.03673	0.018333	0.00008	0.00502	0.87939	1.23096	-0.25495	2.36529	0.02446
16	0.22531	15.3	355	0.19122	0.03409	0.05218	0.05203	0.013566	0.000012	0.00610	0.04001	0.34243	-1.11583	1.49827	0.03456
17	-0.15490	20.5	926	0.47913	-0.63404	-0.96913	-0.96896	0.010875	0.003442	-0.10160	0.34375	0.61452	-0.82618	1.78445	-0.64101
18	0.60206	24.9	1831	0.82668	-0.22462	-0.34331	-0.34244	0.010756	0.000427	-0.03571	0.69203	0.96133	-0.47856	2.13192	-0.22706
19	-0.22185	23.5	2814	1.02920	-1.25105	-1.92017	-1.93517	0.019026	0.023837	-0.26950	0.85012	1.20828	-0.28137	2.33977	-1.27531
20	0.20412	13.8	598	0.20861	-0.00449	-0.00685	-0.00684	0.009327	0.000000	-0.00066	0.08323	0.33399	-1.09571	1.51292	-0.00453
21	1.50515	26.0	2110	0.92656	0.57859	0.88510	0.88455	0.012482	0.003301	0.09945	0.78151	1.07161	-0.37979	2.23291	0.58590
22	1.78533	5.0	1427	0.16365	1.62168	2.48835	2.52633	0.018485	0.038871	0.34670	-0.01287	0.34016	-1.14657	1.47387	1.65222
23	1.17026	25.8	2012	0.89675	0.27351	0.41830	0.41731	0.011978	0.000707	0.04595	0.75466	1.03884	-0.40928	2.20278	0.27682

		1	The CORR	Pro	cedure							
		3 Vari	iables: TE	EMP	RAIN RE	ESID						
			Simple	Stati	stics							
Variable	Ν	Mear	n Std D	ev	Sum	Minimu	m Max	imun	n			
TEMP	178	16.1252	9.202	88	2870	-11.1000	0 27	7000	0			
RAIN	178	1344	4 954.788	16 2	239257	73.0000	00	399	1			
RESID	178	(0 0.654	09	0	-1.8455	6 1	.6216	8	_	Τł	EMP and the model
	P	earson C Pro	orrelation bb > r und	Coe der H	fficients 10: Rho=	s, N = 178 0	В				si	residuals are not gnificantly related
			TEMP		RAIN	RESI						(<i>p</i> > .999).
	TE	MP	1.00000	0. <	55155 0001	0.0000						
	R/	AIN	0.55155 <.0001	1.	00000	0.00000						
	R	ESID	0.00000 1.0000	0. 1	00000	1.00000	D			_	R	AIN and the model
	(p > .999).											
				_		Mod Dependen	lel: MODEL1 t Variable: I	OGHT				TEMP I DADI
						Number of Ot	oservations	Read 17	8		Γ	a significant amount of the
						Number of Ot	oservations	Used 17	'8	_		variation in LOGHT, $F(2, 175) = 20.02$, $n < 0.01$, $P^2 = 1000$
						Analys	sis of Varian Sum of M	ce lean		-/		$(175) = 35.05, p < .001, R = .309, adjusted R^2 = .301.$
					Source Model	DF Sc 2 33	uares Sq .78069 16.8	uare F \ 9034	Value Pr > 39.03 <.00	> F 001		
					Error	175 75	.72662 0.4	3272				$P^2 - 200$
				L	Root	ASE	0.65782 R	Square	0.3085			Adjusted $R^2 = .301$
					Depen	ident Mean	0.45827 A	dj R-Sq	0.3006			
					Coeff	var 1	143.54456					Variance inflation factor
				/ariable	Param DE Estin	Param leter Stand	ard		Tolerano	Varia	nce	(VIF) results
			v Ir	ntercept	t 1 -0.3	2948 0.10	306 -3.20	0.0016	Toleranco	. mila	0	A VIF < 2 indicates that
			T	RAIN	1 0.00 1 0.0002	2832 0.00 4635 0.00006	644 4.40 208 3.97	<pre>0 <.0001 7 0.0001</pre>	0.6958	30 1.43 30 1.43	8720 8720	multicollinearity is not a
	- 32	9 + .028'	ТЕМР + .0	0002	RAIN	2					_	problem in uns model.

		Multi	I PI	DFBETAS are available in PROC REG, but					
			no	t PROC GLM.					
			Hat Diag	Cov		D	DFBETAS		-
Obs	Residual	RStudent	н	Ratio	DFFITS	Intercept	TEMP	RAIN	í.
1	1.1732	1.8019	0.0078	0.9700	0.1594	0.1237	-0.0815	0.0288	
2	0.3178	0.4878	0.0229	1.0370	0.0747	-0.0248	-0.0025	0.0555	
3	-0.8537	-1.3158	0.0231	1.0109	-0.2024	-0.0468	-0.1361	0.1683	
4	-0.1772	-0.2707	0.0148	1.0313	-0.0332	-0.0090	-0.0207	0.0248	
5	-0.8846	-1.3536	0.0084	0.9942	-0.1244	-0.1087	0.0595	0.0001	
6	-0.4217	-0.6430	0.0094	1.0197	-0.0625	0.0005	-0.0395	0.0200	
7	-0.7633	-1.1649	0.0057	0.9996	-0.0885	-0.0393	-0.0114	0.0110	
8	-0.0917	-0.1403	0.0175	1.0351	-0.0187	0.0081	-0.0069	-0.0077	
9	1.1817	1.8133	0.0057	0.9673	0.1368	0.0750	-0.0034	-0.0080	
10	-1.1389	-1.7531	0.0131	0.9781	-0.2022	0.0516	-0.1445	0.0380	
11	-0.2466	-0.3765	0.0133	1.0286	-0.0438	-0.0421	0.0264	0.0024	
12	0.6069	0.9276	0.0116	1.0141	0.1003	-0.0297	0.0468	0.0197	
13	-0.3042	-0.4687	0.0310	1.0459	-0.0838	0.0123	0.0310	-0.0748	
14	-0.3423	-0.5256	0.0237	1.0371	-0.0819	0.0348	-0.0110	-0.0529	
15	0.0240	0.0367	0.0183	1.0363	0.0050	-0.0017	0.0004	0.0033	
16	0.0341	0.0520	0.0136	1.0313	0.0061	0.0034	0.0023	-0.0047	
17	-0.6340	-0.9690	0.0109	1.0121	-0.1016	-0.0213	-0.0629	0.0615	

Sum of Residuals	0	
Sum of Squared Residuals	75.72662	The
Predicted Residual SS (PRESS)	78.17889	PRESS
		Statistic

Obs	LOGHT	TEMP	RAIN	ID
1	1.44716	10.8	1208	1
2	1.42488	24.5	3015	2
3	-0.52288	20.9	278	3
4	0.20412	19.9	598	4
5	-0.69897	9.7	976	5
6	0.23045	22.6	1387	6
7	-0.30103	16.8	1283	7
8	1.00000	27.7	2585	8
9	1.60206	15.5	1262	9
10	-0.30103	26.4	1704	10
11	-0.25964	5.4	664	11
12	1.50515	25.2	2087	12
13	0.69897	19.3	3191	13
14	0.84510	27.2	3031	14
15	1.07918	24.8	2770	15
16	0.22531	15.3	355	16
17	-0.15490	20.5	926	17
18	0.60206	24.9	1831	18
19	-0.22185	23.5	2814	19
20	0.20412	13.8	598	20
21	1.50515	26.0	2110	21
22	1.17026	25.8	2012	23
23	0.00000	19.9	338	24
24	1.17609	24.9	2767	25

This is Plant_Height_2, the dataset from which Influential Observations 22, 102, and 146 have been excluded. Notice that ID 22, for example, is not included in this dataset.

Inferential Statistics Model Building / Variable Selection Research Scenario

A transportation engineer, interested in designing safer roads, would like to know the best set of predictors for vehicular accidents (rate; expressed as the accident rate per million vehicle miles). Due to the high costs of data collection, he is not interested in the full model. The predictors he is considering are:

- average daily traffic count in thousands (adt),
- truck volume as a percent of the total volume (trks),
- speed limit in 1973 (slim),
- total number of lanes of traffic (lane), and
- number of access points per mile (acpt).

This analysis will use the "Highway1.csv" file that can be found as a companion with this SAS guide. If you prefer to enter the data manually, instead of reading in the data file, the raw data for the variables of interest may be found in the Appendix of this guide.

	А	В	С	D	E	F	G	Н	I	J	К	L
1	RATE	LEN	ADT	TRKS	SIGS1	SLIM	SHLD	LANE	ACPT	ITG	LWID	HTYPE
2	4.58	4.99	69	8	0.200401	55	10	8	4.6	1.2	12	FAI
3	2.86	16.11	73	8	0.062073	60	10	4	4.4	1.43	12	FAI
4	3.02	9.75	49	10	0.102564	60	10	4	4.7	1.54	12	FAI
5	2.29	10.65	61	13	0.093897	65	10	6	3.8	0.94	12	FAI
6	1.61	20.01	28	12	0.049975	70	10	4	2.2	0.65	12	FAI
7	6.87	5.97	30	6	2.007504	55	10	4	24.8	0.34	12	PA
8	3.85	8.57	46	8	0.816686	55	8	4	11	0.47	12	PA
9	6.12	5.24	25	9	0.57084	55	10	4	18.5	0.38	12	PA
10	3.29	15.79	43	12	1.453331	50	4	4	7.5	0.95	12	PA
11	5.88	8.26	23	7	1.331065	50	5	4	8.2	0.12	12	PA
12	4.2	7.03	23	6	1.992248	60	10	4	5.4	0.29	12	PA
13	4.61	13.28	20	9	1.285301	50	2	4	11.2	0.15	12	PA
14	4.8	5.4	18	14	0.745185	50	8	2	15.2	0	12	PA
15	3.85	2.96	21	8	0.337838	60	10	4	5.4	0.34	12	PA
16	2.69	11.75	27	7	0.685106	55	10	4	7.9	0.26	12	PA
17	1.99	8.86	22	9	0.112867	60	10	4	3.2	0.68	12	PA
18	2.01	9.78	19	9	0.202249	60	10	4	11	0.2	12	PA
19	4.22	5.49	9	11	0.362149	50	6	2	8.9	0.18	12	PA
20	2.76	8.63	12	8	0.115875	55	6	2	12.4	0.14	13	PA
21	2.55	20.31	12	7	1.039237	60	10	4	7.8	0.05	12	PA
22	1.89	40.09	15	13	0.144944	55	8	4	9.6	0.05	12	PA
23	2.34	11.81	8	8	0.084674	60	10	2	4.3	0	12	PA
24	2.83	11.39	5	9	0.177796	50	8	2	11.1	0	12	PA
25	1.81	22	5	15	0.045455	60	7	2	6.8	0	12	PA
26	9.23	3.58	23	6	2.78933	40	2	4	53	0.56	12	MA
27	8.6	3.23	13	6	1.239598	45	2	2	17.3	0.31	12	MA

Source of Data: Hoffstedt, C. (n.d.). [Highway accidents: Unpublished masters paper]. Unpublished raw data. Retrieved from R Package "car."

Inferential Statistics Model Building / Variable Selection SAS Code

```
DATA HIGHWAY;
            INFILE "C:\Highway1.CSV" FIRSTOBS=2 DSD MISSOVER;
            INPUT RATE LEN ADT TRKS SIGS1 SLIM SHLD LANE ACPT ITG
                  LWID HTYPE $;
            KEEP RATE ADT TRKS SLIM LANE ACPT;
     RUN;
     PROC PRINT DATA=HIGHWAY;
     RUN;
(1)
     PROC GLMSELECT DATA=HIGHWAY PLOTS=ALL;
(2)
           MODEL RATE=ADT TRKS SLIM LANE ACPT /
(3)
                  SELECTION=STEPWISE
(4)
                  DETAILS=STEPS
(5)
                  SELECT=SL SLSTAY=0.05 SLENTRY=0.05;
            TITLE "Stepwise Model Selection: Highway Accident Rate";
     RUN;
     PROC GLMSELECT DATA=HIGHWAY PLOTS=ALL;
            MODEL RATE=ADT TRKS SLIM LANE ACPT /
(6)
                  SELECTION=FORWARD
                  DETAILS=STEPS
                  SELECT=SL SLENTRY=0.05;
(7)
            TITLE "Forward Model Selection: Highway Accident Rate";
     RUN;
     PROC GLMSELECT DATA=HIGHWAY PLOTS=ALL;
            MODEL RATE=ADT TRKS SLIM LANE ACPT /
                  SELECTION=BACKWARD
(8)
                  DETAILS=STEPS
(9)
                  SELECT=SL SLSTAY=0.05;
            TITLE "Backward Model Selection: Highway Accident Rate";
     RUN;
(10)
     PROC REG DATA=HIGHWAY PLOTS (ONLY) = (RSQUARE ADJRSQ CP);
            MODEL RATE=ADT TRKS SLIM LANE ACPT /
(11)
                  SELECTION=RSQUARE
(12)
                  ADJRSQ CP;
            TITLE "All Possible Subsets Analysis: Highway Accident Rate";
     RUN;
     TITLE:
     QUIT;
```

- (1) PROC GLMSELECT is used for model building.
- (2) The MODEL statement is written as Dependent Variable (DV) = Independent Variable (IV). Be sure to include all of the IVs that are candidates for inclusion.
- (3) The SELECTION option is used to identify the model building method you want to use (STEPWISE, FORWARD, or BACKWARD). Here, STEPWISE was chosen.

- (4) The DETAILS=STEPS option is used if you want to see what SAS did at each step of model building (as opposed to seeing the final model only).
- (5) The SELECT= option is used to identify the statistic that is used in variable selection. Options include AIC, AICC, BIC, and SBC. Here, SL is used. SL refers to "significance level." In other words, a variable has to make a significant *p* value contribution to the model. If you choose SELECT=SL, you must also identify a significance level for a variable to qualify for entry in the model (SLENTRY=) and a significance level for a variable to qualify to stay in the model (SLSTAY=).
- (6) The SELECTION option is used to identify the model building method you want to use (STEPWISE, FORWARD, or BACKWARD). Here, FORWARD was chosen.
- (7) For forward selection, if you choose SELECT=SL, you must also identify the significance level for a variable to qualify for entry in the model (SLENTRY=).
- (8) The SELECTION option is used to identify the model building method you want to use (STEPWISE, FORWARD, or BACKWARD). Here, BACKWARD was chosen.
- (9) For backward selection, if you choose SELECT=SL, you must also identify the significance level for a variable to qualify to stay in the model (SLSTAY=).
- (10) This PROC REG is used to conduct an all-possible-subsets analysis.
- (11) The SELECTION=RSQUARE option tells SAS to analyze all possible subsets and rank them based on their R-square values. You may also use adjusted R-square (SELECTION=ADJRSQ) or Mallow's Cp (SELECTION=CP).
- (12) The ADJRSQ and CP options request these values to be output for each subset, even though they were not used as the ranking criteria. Remember: You may copy and paste the output into Excel if you want to sort or manipulate the results.

Inferential Statistics Model Building / Variable Selection Selected Output

Stepwise Model Selection: Highway Accident Rate

The GLMSELECT Procedure

Data Set	WORK.HIGHWAY		
Dependent Variable	RATE	Stern	visa Salaction
Selection Method	Stepwise	Stepw	vise selection
Select Criterion	Significance Level		
Stop Criterion	Significance Level		Statistical significance
Entry Significance Level (SLE)	0.05		is being used as the
Stay Significance Level (SLS)	0.05		criteria for selection
Effect Hierarchy Enforced	None		and stopping. Other
			options include AIC,
			AICC, BIC, and SBC.
A variable mus <i>p</i> value of .05 c	t have a or less to		A variable must have a

p value of .05 or less to stay in the model.

A variable must have a *p* value of .05 or less to enter the model.

Stepwise Model Selection: Highway Accident Rate

The GLMSELECT Procedure Stepwise Selection: Step 0

Effect Entered: Intercept

А	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	0	0		
Error	38	149.88607	3.94437	
Corrected Total	38	149.88607		

Root MSE	1.98604
Dependent Mean	3.93333
R-Square	0.0000
Adj R-Sq	0.0000
AIC	95.50624
AICC	95.83957
SBC	56.16980

	Par	ameter Est	timates	
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	3.933333	0.318022	12.37

Step 0: Intercept-only (null) model

Stepwise Model Selection: Highway Accident Rate

A	Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value			
Model	1	84.76691	84.76691	48.16			
Error	37	65.11915	1.75998				
Corrected Total	38	149.88607					

Root MSE	1.32664
Dependent Mean	3.93333
R-Square	0.5655
Adj R-Sq	0.5538
AIC	64.99363
AICC	65.67934
SBC	27.32075

	Par	ameter Est	timates	
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	1.984477	0.352115	5.64
ACPT	1	0.160281	0.023095	6.94

	Entry (Candidate	S
Rank	Effect	Log pValue	Pr > F
1	ACPT	- 17.1 945	<.0001
2	SLIM	-13.2096	<.0001
3	TRKS	-7.0697	0.0009
4	LANE	-0.1719	0.8420
5	ADT	-0.1474	0.8629

Stepwise Model Selection: Highway Accident Rate

The GLMSELECT Procedure Stepwise Selection: Step 2

Effect Entered: TRKS

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	2	94.82015	47.41008	30.99
Error	36	55.06591	1.52961	
Corrected Total	38	149.88607		

Root MSE	1.23677
Dependent Mean	3.93333
R-Square	0.6326
Adj R-Sq	0.6122
AIC	60.45380
AICC	61.63027
SBC	24.4448

Step 2:
$\widehat{RATE} = TRKS + ACPT$

Parameter Estimates							
Parameter	DF	t Value					
Intercept	1	4.429324	1.008565	4.39			
TRKS	1	-0.234177	0.091344	-2.56			
ACPT	1	0.138964	0.023081	6.02			

Entry Candidates							
Rank	Effect	Log pValue	Pr > F				
1	TRKS	-4.2214	0.0147				
2	SLIM	-3.4540	0.0316				
3	ADT	-1.6654	0.1891				
4	LANE	-1.3978	0.2471				

Stepwise Model Selection: Highway Accident Rate

The GLMSELECT Procedure Stepwise Selection: Step 3

Effect Entered: SLIM

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value		
Model	3	101.52930	33.84310	24.50		
Error	35	48.35676	1.38162			
Corrected Total	38	149.88607				

Root MSE	1.17542	
Dependent Mean	3.93333	
R-Square	0.6774	
Adj R-Sq	0.6497	
AIC	57.38673	
AICC	59.20491	
SBC	23.04098	

Step 3: $\widehat{RATE} = TRKS + SLIM + ACPT$

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value		
Intercept	1	10.206900	2.791567	3.66		
TRKS	1	-0.219942	0.087053	-2.53		
SLIM	1	-0.098439	0.044671	-2.20		
ACPT	1	0.098149	0.028709	3.42		

Entry Candidates								
Rank	Effect	Log pValue	Pr > F					
1	SLIM	-3.3749	0.0342					
2	ADT	-1.0350	0.3552					
3	LANE	-0.6273	0.5341					

Stepwise Model Selection: Highway Accident Rate

	Stepwise Selection Summary								
Step	Effect Entered	Effect Removed	Number Effects In	F Value	Pr > F				
0	Intercept		1	0.00	1.0000				
1	ACPT		2	48.16	<.0001				
2	TRKS		3	6.57	0.0147				
3	SLIM		4	4.86	0.0342				

The GLMSELECT Procedure

Selection stopped because the candidate for entry has SLE > 0.05 and the candidate for removal has SLS < 0.05.

Stop Details							
Candidate For	Effect	Candidate Significance		Compare Significance			
Entry	ADT	0.1897	>	0.0500	(SLE)		
Removal	SLIM	0.0342	<	0.0500	(SLS)		

DF

1

1

1

Parameter

Intercept

TRKS

SLIM

ACPT

Root MSE	1.17542	
Dependent Mean	3.93333	
R-Square	0.6774	
Adj R-Sq	0.6497	
AIC	57.38673	
AICC	59.20491	
SBC	23.04098	

Parameter Estimates

Estimate

-0.098439

0.098149

1 10.206900

Standard

2.791567

0.044671

0.028709

-0.219942 0.087053

Error t Value

3.66

-2.53

-2.20

3.42

Multiple regression analysis for the final model (Cont.)

$\widehat{RATE} = 10.207220TRKS098SLIM + .098ACPT$

Forward Model Selection: Highway Accident Rate

The GLMSELECT Procedure

Data Set	WOR	K.HIG	GHWAY			
Dependent Variable RATE				,	and Calcation	
Selection Method	Selection Method Forward				orwa	rd Selection
Select Criterion	Signif	ficano	ce Level			
Stop Criterion	Signif	ficano	ce Level			Statistical significance
Entry Significance Level (SLE)			0.05	1		is being used as the
Effect Hierarchy Enforced	None		None			criteria for selection
Number of Observation	Read	39	1		_	and stopping. Other
Number of Observation	s Used	39				options include AIC
]			AICC, BIC, and SBC
Dimensions					<u>۱</u>	
Number of Effects	6					
Number of Parame	ters 6					A variable must hav
						p value of .05 or less
						enter the model.

Forward Model Selection: Highway Accident Rate

The GLMSELECT Procedure Forward Selection: Step 0

Effect Entered: Intercept

Analysis of Variance				
Source DF Squares Square F Value				
Model	0	0		
Error	38	149.88607	3.94437	
Corrected Total	38	149.88607		

Root MSE	1.98604
Dependent Mean	3.93333
R-Square	0.0000
Adj R-Sq	0.0000
AIC	95.50624
AICC	95.83957
SBC	56.16980

Parameter Estimates				
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	3.933333	0.318022	12.37

Step 0: Intercept-only (null) model

Forward Model Selection: Highway Accident Rate

The GLMSELECT Procedure Forward Selection: Step 1	Step 1:
	$\widehat{RATE} = ACPT$

Effect Entered: ACPT

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	1	84.76691	84.76691	48.16
Error	37	65.11915	1.75998	
Corrected Total	38	149.88607		

Root MSE	1.32664
Dependent Mean	3.93333
R-Square	0.5655
Adj R-Sq	0.5538
AIC	64.99363
AICC	65.67934
SBC	27.32075

	Par	ameter Est	timates	
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	1.984477	0.352115	5.64
ACPT	1	0.160281	0.023095	6.94

	Entry (Candidate	S
Rank	Effect	Log pValue	Pr > F
1	ACPT	-17.1945	<.0001
2	SLIM	-13.2096	<.0001
3	TRKS	-7.0697	0.0009
4	LANE	-0.1719	0.8420
5	ADT	-0.1474	0.8629

Forward Model Selection: Highway Accident Rate

The GLMS	SELECT	Procedure
Forward	Selecti	on: Step 2

Effect Entered: TRKS

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	2	94.82015	47.41008	30.99
Error	36	55.06591	1.52961	
Corrected Total	38	149.88607		

Root MSE	1.23677
Dependent Mean	3.93333
R-Square	0.6326
Adj R-Sq	0.6122
AIC	60.45380
AICC	61.63027
SBC	24.44448

Step 2:
$\widehat{RATE} = TRKS + ACPT$

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value		
Intercept	1	4.429324	1.008565	4.39		
TRKS	1	-0.234177	0.091344	-2.56		
ACPT	1	0.138964	0.023081	6.02		

Entry Candidates						
Rank	Effect	Log pValue	Pr > F			
1	TRKS	-4.2214	0.0147			
2	SLIM	-3.4540	0.0316			
3	ADT	-1.6654	0.1891			
4	LANE	-1.3978	0.2471			

Forward Model Selection: Highway Accident Rate

The GLMSELECT Procedure Forward Selection: Step 3

Effect Entered: SLIM

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	3	101.52930	33.84310	24.50
Error	35	48.35676	1.38162	
Corrected Total	38	149.88607		

Root MSE	1.17542
Dependent Mean	3.93333
R-Square	0.6774
Adj R-Sq	0.6497
AIC	57.38673
AICC	59.20491
SBC	23.04098

Parameter Estimates								
Parameter	Parameter DF Estimate Standard Error							
Intercept	1	10.206900	2.791567	3.66				
TRKS	1	-0.219942	0.087053	-2.53				
SLIM	1	-0.098439	0.044671	-2.20				
ACPT	1	0.098149	0.028709	3.42				

	Entry Candidates						
Rank	Effect	Log pValue	Pr > F				
1	SLIM	-3.3749	0.0342				
2	ADT	-1.0350	0.3552				
3	LANE	-0.6273	0.5341				

Step 3: $\widehat{RATE} = TRKS + SLIM + ACPT$

Forward Model Selection: Highway Accident Rate

	Forward Selection Summary					
Step	Effect Entered	Number Effects In	F Value	Pr > F		
0	Intercept	1	0.00	1.0000		
1	ACPT	2	48.16	<.0001		
2	TRKS	3	6.57	0.0147		
3	SLIM	4	4.86	0.0342		

The GLMSELECT Procedure

Selection stopped as the candidate for entry has SLE > 0.05.

Stop Details							
CandidateCandidateCompareForEffectSignificanceSignificance							
Entry	ADT	0.1897	>	0.0500	(SLE)		

RATE = 10.207 - .220TRKS - .098SLIM + .098ACPT

Backward Model Selection: Highway Accident Rate

The GLMSELECT Procedure

Backward Model Selection: Highway Accident Rate

The GLMSELECT Procedure Backward Selection: Step 0

Full Least Squares Model

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	5	103.96214	20.79243	14.94
Error	33	45.92393	1.39163	
Corrected Total	38	149.88607		

Step 0: Full model $\widehat{RATE} = ADT + TRKS + SLIM + LANE + ACPT$

Root MSE	1.17968
Dependent Mean	3.93333
R-Square	0.6936
Adj R-Sq	0.6472
AIC	59.37356
AICC	62.98647
SBC	28.35493

Parameter Estimates						
Parameter	DF	Estimate	Standard Error	t Value		
Intercept	1	10.087521	2.820490	3.58		
ADT	1	0.012914	0.018231	0.71		
TRKS	1	-0.194036	0.090697	-2.14		
SLIM	1	-0.107760	0.045732	-2.36		
LANE	1	0.024717	0.253993	0.10		
ACPT	1	0.103051	0.029052	3.55		

Backward Model Selection: Highway Accident Rate

The Back	GLM	SELECT Pro	cedure Step 1	
Ef	fect	Removed: L	.ANE	
Source	DF	Sum of Squares	Mean Square	F Value
Model	4	103.94896	25.98724	19.23
Error	34	45.93711	1.35109	
Corrected Total	38	149.88607		

Root MSE	1.16236
Dependent Mean	3.93333
R-Square	0.6935
Adj R-Sq	0.6575
AIC	57.38475
AICC	60.00975
SBC	24.70256

Step 1: $\widehat{RATE} = ADT + TRKS + SLIM + ACPT$

Parameter Estimates				
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	10.118501	2.761342	3.66
ADT	1	0.014338	0.010714	1.34
TRKS	1	-0.195580	0.087990	-2.22
SLIM	1	-0.107163	0.044654	-2.40
ACPT	1	0.103049	0.028625	3.60

R	emoval	Candida	tes
Rank	Effect	Log pValue	Pr > F
1	LANE	-0.0801	0.9231
2	ADT	-0.7263	0.4837
3	TRKS	-3.2215	0.0399
4	SLIM	-3.7072	0.0245
5	ACPT	-6.7325	0.0012

Backward Model Selection: Highway Accident Rate

The GLMSELECT Procedure
Backward Selection: Step 2

Effect Removed: ADT

A	naly	sis of Varia	nce	
Source	DF	Sum of Squares	Mean Square	F Value
Model	3	101.52930	33.84310	24.50
Error	35	48.35676	1.38162	
Corrected Total	38	149.88607		

Root MSE	1.17542
Dependent Mean	3.93333
R-Square	0.6774
Adj R-Sq	0.6497
AIC	57.38673
AICC	59.20491
SBC	23.04098

Step 2: $\widehat{RATE} = TRKS + SLIM + ACPT$

Parameter Estimates					
Parameter	DF	Estimate	Standard Error	t Value	
Intercept	1	10.206900	2.791567	3.66	
TRKS	1	-0.219942	0.087053	-2.53	
SLIM	1	-0.098439	0.044671	-2.20	
ACPT	1	0.098149	0.028709	3.42	

R	Removal Candidates				
Rank	Effect	Log pValue	Pr > F		
1	ADT	-1.6623	0.1897		
2	TRKS	-3.4117	0.0330		
3	SLIM	-3.8156	0.0220		
4	ACPT	-6.9055	0.0010		

Backward Model Selection: Highway Accident Ra

The GLMSELECT Procedure

Backward Selection Summary				
Step	Effect Removed	Number Effects In	F Value	Pr > F
0		6		
1	LANE	5	0.01	0.9231
2	ADT	4	1.79	0.1897

Selection stopped because the next candidate for removal has SLS < 0.05.

Stop Details					
Candidate For	Effect	Candidate Significance		Compare Significance	
Removal	SLIM	0.0342	<	0.0500	(SLS)

Root MSE	1.17542
Dependent Mean	3.93333
R-Square	0.6774
Adj R-Sq	0.6497
AIC	57.38673
AICC	59.20491
SBC	23.04098

Multiple regression analysis for the final model (Cont.)

Parameter Estimates				
Parameter	DF	Estimate	Standard Error	t Value
Intercept	1	10.206900	2.791567	3.66
TRKS	1	-0.219942	0.087053	-2.53
SLIM	1	-0.098439	0.044671	-2.20
ACPT	1	0.098149	0.028709	3.42

 $\widehat{RATE} = 10.207 - .220TRKS - .098SLIM + .098ACPT$

All Possible Subsets Analysis: Highway Accident Rate

Model Index	Number in Model	R-Square	Adjusted R-Square	C(p)	Variables in Model	
1	1	0.5655	0.5538	11.7933	АСРТ	
2	1	0.4637	0.4492	22.7581	SLIM	
3	1	0.2627	0.2428	44.4132	TRKS	
4	1	0.0011	0259	72.5879	LANE	
5	1	0.0008	0262	72.6172	ADT	
6	2	0.6326	0.6122	6.5692	TRKS ACPT	
7	2	0.6185	0.5973	8.0856	SLIM ACPT	
8	2	0.5861	0.5631	11.5749	ADT ACPT	
9	2	0.5816	0.5584	12.0610	LANE ACPT	
10	2	0.5696	0.5457	13.3518	TRKS SLIM	
11	2	0.4870	0.4585	22.2503	SLIM LANE	
12	2	0.4839	0.4552	22.5865	5 ADT SLIM	
13	2	0.2754	0.2352	45.0405	5 TRKS LANE	
14	2	0.2688	0.2282	45.7497	ADT TRKS	
15	2	0.0011	0544	74.5873	ADT LANE	
16	3	0.6774	0.6497	3.7482	TRKS SLIM ACPT	
17	3	0.6490	0.6189	6.8062	ADT SLIM ACPT	
18	3	0.6470	0.6167	7.0233	SLIM LANE ACPT	
19	3	0.6416	0.6109	7.6011	ADT TRKS ACPT	
20	3	0.6367	0.6056	8.1283	TRKS LANE ACPT	
21	3	0.5864	0.5510	13.5441	ADT LANE ACPT	
22	3	0.5767	0.5404	14.5913	ADT TRKS SLIM	
23	3	0.5750	0.5386	14.7764	TRKS SLIM LANE	

This data may be copied and pasted into Excel if you want to sort or otherwise manipulate the results.

This is the best twoparameter model (i.e. the best model with one IV). It has an R^2 value just shy of .6. From the previous table, you can see that this is the model that includes ACPT ($R^2 = .5655$).

Apper US Cere	ndix al Data	
CALORIES	CARBO	
212.12121	15.15152	
212.12121	21.21212	
100.00000	16.00000	
146.66667	14.00000	
110.00000	11.00000	
173.33333	24.00000	
134.32836	22.38806	
134.32836	19.40299	
160.00000	16.00000	
88.00000	13.60000	
160.00000	17.33333	
220.00000	26.00000	
110.00000	12.00000	
110.00000	22.00000	
100.00000	21.00000	
110.00000	13.00000	
110.00000	12.00000	
220.00000	20.00000	
110.00000	21.00000	
133.33333	14.66667	
133.33333	24.00000	
110.00000	11.00000	
146.66667	18.66667	
125.00000	17.50000	
179.10448	17.91045	
179.10448	20.89552	
146.66667	17.33333	
113.63636	12.50000	
146.66667	20.00000	
113.63636	17.04545	
440.00000	68.00000	
363.63636	39.39394	
120.00000	12.00000	
146.66667	15.33333	
82.70677	10.52632	
186.66667	26.66667	
73.33333	14.00000	
149.25373	17.91045	
110.00000	12.00000	

238.80597	25.37313
100.00000	15.00000
179.10448	22.38806
208.95522	31.34328
260.00000	27.00000
179.10448	16.41791
100.00000	20.00000
50.00000	13.00000
200.00000	28.00000
160.00000	18.66667
200.00000	21.00000
180.00000	30.00000
97.34513	20.35398
110.00000	22.00000
134.32836	28.35821
134.32836	29.85075
146.66667	12.00000
110.00000	16.00000
110.00000	21.00000
140.00000	15.00000
100.00000	16.00000
146.66667	28.00000
110.00000	13.00000
149.25373	25.37313
100.00000	17.00000
146.66667	21.33333

	Appe Plant Hei	ndix ght Data		
HEIGHT	LOGHT	TEMP	RAIN	
28.000000	1.447158	10.80	1208	
26.600000	1.424882	24.50	3015	
0.300000	-0.522880	20.90	278	
1.600000	0.204120	19.90	598	
0.200000	-0.698970	9.70	976	
1.700000	0.230449	22.60	1387	
0.500000	-0.301030	16.80	1283	
10.000000	1.000000	27.70	2585	
40.000000	1.602060	15.50	1262	
0.500000	-0.301030	26.40	1704	
0.550000	-0.259640	5.40	664	
32.000000	1.505150	25.20	2087	
5.000000	0.698970	19.30	3191	
7.000000	0.845098	27.20	3031	
12.000000	1.079181	24.80	2770	
1.680000	0.225309	15.30	355	
0.700000	-0.154900	20.50	926	
4.000000	0.602060	24.90	1831	
0.600000	-0.221850	23.50	2814	
1.600000	0.204120	13.80	598	
32.000000	1.505150	26.00	2110	
61.000000	1.785330	5.00	1427	
14.800000	1.170262	25.80	2012	
1.000000	0.000000	19.90	338	
15.000000	1.176091	24.90	2767	
7.000000	0.845098	26.80	1184	
20.000000	1.301030	25.00	2664	
7.000000	0.845098	25.40	2494	
2.900000	0.462398	26.30	2607	
9.670000	0.985426	18.20	3042	
8.000000	0.903090	24.10	2314	
2.000000	0.301030	22.30	216	
0.600000	-0.221850	15.70	1052	
1.700000	0.230449	13.00	723	
7.000000	0.845098	18.30	762	
0.080000	-1.096910	-11.10	252	
0.200000	-0.698970	14.90	1150	
0.707000	-0.150580	3.40	637	
7.000000	0.845098	20.70	703	

0.500000	-0.301030	13.00	214
23.500000	1.371068	26.50	2542
16.000000	1.204120	23.40	1315
0.233000	-0.632640	0.20	526
34.000000	1.531479	25.90	2315
15.000000	1.176091	25.50	2462
15.000000	1.176091	24.60	2660
1.500000	0.176091	17.00	1003
16.000000	1.204120	26.00	3991
2.800000	0.447158	15.60	384
25.000000	1.397940	25.90	3048
20.000000	1.301030	27.30	1505
0.400000	-0.397940	23.90	1027
6.000000	0.778151	4.20	2043
0.200000	-0.698970	-5.70	305
3.500000	0.544068	4.80	599
25.000000	1.397940	17.00	1307
18.000000	1.255273	2.40	2142
10.000000	1.000000	16.20	276
10.000000	1.000000	25.20	2576
0.500000	-0.301030	15.70	281
19.000000	1.278754	24.90	3273
20.000000	1.301030	24.60	2674
3.000000	0.477121	17.90	583
0.110000	-0.958610	13.70	630
12.500000	1.096910	26.20	790
0.600000	-0.221850	16.50	546
0.050000	-1.301030	-5.10	257
30.000000	1.477121	22.70	2726
35.000000	1.544068	24.80	1649
3.000000	0.477121	22.50	2865
0.200000	-0.698970	1.20	788
0.050000	-1.301030	3.70	500
0.032200	-1.492140	16.80	420
3.500000	0.544068	21.20	1741
12.000000	1.079181	25.40	2494
0.800000	-0.096910	-2.90	301
16.000000	1.204120	13.80	603
16.000000	1.204120	23.90	1036
30.000000	1.477121	17.00	706
30.000000	1.477121	26.50	1661
18.100000	1.257679	26.00	3612
10.000000	1.000000	7.00	508
3.000000	0.477121	14.90	682
7.000000	0.845098	19.40	964

4.000000	0.602060	24.80	3283
0.080000	-1.096910	-1.00	436
5.000000	0.698970	5.00	1427
2.500000	0.397940	24.30	2567
32.000000	1.505150	23.00	1327
30.000000	1.477121	9.90	1037
10.000000	1.000000	27.10	1664
2.000000	0.301030	9.00	781
29.300000	1.466868	9.40	1975
4.000000	0.602060	25.30	2444
0.220000	-0.657580	-5.10	257
41.000000	1.612784	9.50	2561
24.000000	1.380211	19.80	793
2.000000	0.301030	25.00	2662
4.500000	0.653213	18.60	882
2.400000	0.380211	16.90	1313
2.000000	0.301030	27.30	1505
0.040000	-1.397940	10.60	1936
28.000000	1.447158	24.80	3283
0.070000	-1.154900	-6.40	244
0.280000	-0.552840	8.50	996
5.000000	0.698970	24.80	2803
0.500000	-0.301030	18.60	1099
0.800000	-0.096910	-0.70	422
35.000000	1.544068	7.00	972
20.000000	1.301030	24.80	2993
1.800000	0.255273	13.50	915
19.000000	1.278754	12.70	1121
0.350000	-0.455930	10.90	208
0.250000	-0.602060	13.00	214
30.000000	1.477121	7.50	1720
15.000000	1.176091	22.70	1397
10.000000	1.000000	25.10	2598
3.000000	0.477121	22.90	73
30.000000	1.477121	24.90	3329
0.080000	-1.096910	-10.50	236
2.020000	0.305351	20.20	475
0.800000	-0.096910	23.90	1545
1.150000	0.060698	12.40	1263
0.450000	-0.346790	18.90	293
6.000000	0.778151	24.80	3269
0.150000	-0.823910	-1.20	657
1.584893	0.200000	5.10	691
0.140000	-0.853870	3.70	500
5.000000	0.698970	20.90	278

2.500000	0.397940	24.80	2920
3.000000	0.477121	16.40	501
20.000000	1.301030	15.30	780
6.000000	0.778151	22.60	803
1.700000	0.230449	16.70	484
0.200000	-0.698970	6.40	1379
6.000000	0.778151	16.20	272
3.800000	0.579784	20.80	1698
8.000000	0.903090	18.90	380
9.000000	0.954243	19.10	1085
0.600000	-0.221850	9.60	174
0.239000	-0.621600	13.50	867
4.500000	0.653213	21.00	834
12.000000	1.079181	24.80	2835
1.700000	0.230449	20.50	354
0.810000	-0.091510	1.30	539
13.500000	1.130334	-4.30	296
0.500000	-0.301030	4.90	977
0.720000	-0.142670	16.70	290
1.500000	0.176091	17.50	1165
1.710000	0.232996	20.10	520
0.300000	-0.522880	13.70	1019
3.000000	0.477121	7.90	1156
8.000000	0.903090	27.50	1663
2.900000	0.462398	18.10	597
13.000000	1.113943	13.60	1016
0.200000	-0.698970	4.30	374
1.000000	0.000000	12.00	872
39.600000	1.597695	26.50	1974
0.158000	-0.801340	4.50	597
0.500000	-0.301030	20.40	310
9.000000	0.954243	20.40	310
3.000000	0.477121	10.10	1176
1.050000	0.021189	-2.10	1418
0.500000	-0.301030	9.10	2421
11.000000	1.041393	21.00	1476
39.000000	1.591065	8.00	692
1.940000	0.287802	16.60	212
12.400000	1.093422	6.20	564
1.500000	0.176091	7.80	1211
1.000000	0.000000	15.30	656
0.750000	-0.124940	27.00	2319
4.000000	0.602060	12.10	859
15.000000	1.176091	25.00	2616
0.550000	-0.259640	26.00	1117

6.000000	0.778151	24.90	2731
0.500000	-0.301030	16.70	630
15.000000	1.176091	2.70	572
0.246000	-0.609060	3.50	1555

 Appendix Highway1 Data					
RATE	ADT	TRKS	SLIM	LANE	ACPT
4.58	69	8	55	8	4.6
2.86	73	8	60	4	4.4
3.02	49	10	60	4	4.7
2.29	61	13	65	6	3.8
1.61	28	12	70	4	2.2
6.87	30	6	55	4	24.8
3.85	46	8	55	4	11.0
6.12	25	9	55	4	18.5
3.29	43	12	50	4	7.5
5.88	23	7	50	4	8.2
4.20	23	6	60	4	5.4
4.61	20	9	50	4	11.2
4.80	18	14	50	2	15.2
3.85	21	8	60	4	5.4
2.69	27	7	55	4	7.9
1.99	22	9	60	4	3.2
2.01	19	9	60	4	11.0
4.22	9	11	50	2	8.9
2.76	12	8	55	2	12.4
2.55	12	7	60	4	7.8
1.89	15	13	55	4	9.6
2.34	8	8	60	2	4.3
2.83	5	9	50	2	11.1
1.81	5	15	60	2	6.8
9.23	23	6	40	4	53.0
8.60	13	6	45	2	17.3
8.21	7	8	55	2	27.3
2.93	10	10	55	2	18.0
7.48	12	7	45	2	30.2
2.57	9	8	60	2	10.3
5.77	4	8	45	2	18.2
2.90	5	10	55	2	12.3
2.97	4	13	55	2	7.1
1.84	5	12	55	2	14.0
3.78	2	10	55	2	11.3
2.76	3	8	50	2	16.3
4.27	1	11	55	2	9.6
3.05	3	11	60	2	9.0
4.12	1	10	55	2	10.4